Advertisement

Astronaut Photography: Handheld Camera Imagery from Low Earth Orbit

  • William L. Stefanov
  • Cynthia A. Evans
  • Susan K. Runco
  • M. Justin Wilkinson
  • Melissa D. Higgins
  • Kimberly Willis
Living reference work entry

Abstract

Photographic observations of the Earth by humans in low earth orbit, in contrast to unmanned orbital sensor systems, began during the 1960s as part of both the USA and former USSR manned space flight programs. The value of regularly repeated photographic observations of the Earth from orbit was demonstrated by later long-duration missions and led directly to the development of unmanned, multispectral orbital sensors such as the Multispectral Scanner and Thematic Mapper on board the Landsat series of satellites. Handheld imagery of the Earth has been continually acquired during both USA and USSR/Russian space station and former Space Shuttle programs and represents a rich dataset that complements both historical and current unmanned sensor data for terrestrial studies. This revised chapter provides an overview of astronaut/cosmonaut imagery and development of specific data collection programs, then moves on to discussion of technical aspects of both the historical film and current digital cameras used in orbit with information on how to access online datasets. Case studies are presented to highlight varied applications of handheld imagery for terrestrial research and natural hazard monitoring. Developments in time-lapse sequence photography, full georeferencing of astronaut photographs, and involvement with international disaster response efforts are discussed. The chapter concludes with discussion of future directions for digital handheld imagery of the Earth from manned orbital platforms such as the International Space Station (ISS).

Keywords

Astronaut Cosmonaut Camera Space Shuttle International Space Station (ISS) Film Human Space Flight Mir Skylab Apollo Geology Geography Oceanography Atmospheric Science Meteorology Hydrology Ecology Urban Hazards National Aeronautics and Space Administration (NASA) 

References

  1. D.L. Amsbury, Geological comparison of spacecraft and aircraft photographs of the Potrillo Mountains, New Mexico, and Franklin Mountains, Texas, in Proceedings of the Sixth International Symposium on Remote Sensing of Environment, vol. 2 (Environmental Research Institute of Michigan, Ann Arbor, 1969), pp. 493–515Google Scholar
  2. D.L. Amsbury, United States manned observations of earth before the space shuttle. Geocarto Int. 1, 7–14 (1989)CrossRefGoogle Scholar
  3. Anonymous, Earth Photography from Gemini VI Through XII: National Aeronautics and Space Administration Special Publication 142 (National Aeronautics and Space Administration, Washington, DC, USA, 1968), 135 pGoogle Scholar
  4. M. Baatz, C. Hoffmann, G. Willhauck, Progressing from object-based to object-oriented image analysis, in Object-Based Image Analysis, ed. by T. Blaschke, S. Lang, G.J. Hay (Springer, Berlin, 2008), pp. 29–32CrossRefGoogle Scholar
  5. P.C. Badgley, L. Miloy, L.F. Childs, Oceans from Space (Gulf Publishing Company, Houston, 1969)Google Scholar
  6. D. Bannert, Plate Drift in the Afar and Issas Territory (French Somalia) and Eastern Ethiopia as Seen on Space Photography. NASA TN-D-6277 (1972), http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19720020695_1972020695.pdf. Accessed 2 Feb 2016
  7. T.C. Blair, J.G. McPherson, Alluvial fans and their natural distinction from rivers based on morphology, hydraulic processes, sedimentary processes, and facies assemblages. J. Sediment. Res. A64(3), 450–489 (1994)Google Scholar
  8. T. Blaschke, C. Burnett, A. Pekkarinen, New contextual approaches using image segmentation for object-based classification, in Remote Sensing Image Analysis: Including the Spatial Domain, ed. by F. De Meer, S. de Jong (Kluwer, Dordrecht, 2004), pp. 211–236CrossRefGoogle Scholar
  9. L.D. Carter, R.O. Stone, Interpretation of orbital photographs. Photogramm. Eng. 40, 193–197 (1974)Google Scholar
  10. J. Cimino, C. Elachi, M. Settle, SIR-B-the second shuttle imaging radar experiment. IEEE Trans. Geosci. Remote Sens. GE-24(4), 445–452 (1986)CrossRefGoogle Scholar
  11. W.D. Compton, Where No Man Has Gone Before: A History of Apollo Lunar Exploration Missions. NASA History Series NASA SP-4214 (National Aeronautics and Space Administration, Washington, DC, 1989). 428 pGoogle Scholar
  12. E.M. Cortright, Exploring Space with a Camera. NASA SP-168 (1968), http://history.nasa.gov/SP-168/sp168.htm. Accessed 2 Feb 2016
  13. A.J. Derr, Photography Equipment and Techniques: A Survey of NASA Developments. NASA History Series NASA SP-5099 (National Aeronautics and Space Administration, Washington, DC, 1972). 25 pGoogle Scholar
  14. J.E. Dornbach, Analysis of Apollo AS-501 Mission Earth Photography. NASA TM-X-58015 (1968), http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19680026995_1968026995.pdf. Accessed 2 Feb 2016
  15. C. Elachi, W.E. Brown, J.B. Cimino, T. Dixon, D.L. Evans, J.P. Ford, R.S. Saunders, C. Breed, H. Masursky, J.F. McCauley, G. Schaber, L. Dellwig, A. England, H. Macdonald, P. Martin-Kaye, F. Sabins, Shuttle imaging radar experiment. Science 218(4576), 996–1003 (1982)CrossRefGoogle Scholar
  16. D. Eppler, S. Runco, Earth observations capabilities of the Window Observational Research Facility on board the International Space Station, in Proceedings of the American Institute of Aeronautics and Astronautics Conference on International Space Station Utilization, contribution AIAA-2001-91401 (American Institute of Aeronautics and Astronautics, Reston, VA, USA, 2001)Google Scholar
  17. European Space Agency, Cupola (2011), http://www.esa.int/esaHS/ESA65K0VMOC_iss_0.html. Accessed 2 Feb 2016
  18. D.L. Evans, J.J. Plaut, E.R. Stofan, Overview of the spaceborne imaging radar-C/X-band synthetic aperture radar (SIR-C/X-SAR) missions. Remote Sens. Environ. 59(2), 135–140 (1997)CrossRefGoogle Scholar
  19. C.A. Evans, D.R. Pettit, S. Runco, G. Byrne, K. Willis, J. Heydorn, W.L. Stefanov, M.J. Wilkinson, M. Trenchard, in International Polar Year Observations from the International Space Station. Eos Transactions of the American Geophysical Union 87(52), Fall Meeting Supplement, Abstract IN41A-0878 (2006)Google Scholar
  20. C.A. Evans, M.J. Wilkinson, W.L. Stefanov, K. Willis, Training astronauts to observe the Earth from the Space Shuttle and International Space Station, in Analogs for Planetary Exploration, ed. by W.B. Garry, J.E. Bleacher. Geological Society of America Special Paper 483 (Geological Society of America, Boulder, CO, USA, 2011), pp. 67–73Google Scholar
  21. G.C. Ewing, Oceanography from Space (Woods Hole Oceanographic Institution, Woods Hole, 1965). Ref. No. 65-10, 469 pGoogle Scholar
  22. Expedition Earth and Beyond Project (NASA Johnson Space Center, Houston, 2016), http://ares.jsc.nasa.gov/ares/eeab/index.cfm. Accessed 2 Feb 2016
  23. W.B. Foster, Earth Photographs form Gemini III, IV, V: National Aeronautics and Space Administration Special Publication 129 (National Aeronautics and Space Administration, Washington, DC, USA, 1967a), 266 pGoogle Scholar
  24. W.B. Foster, O. Smistad, Gemini Experiments Program Summary: National Aeronautics and Space Administration Special Publication 138 (National Aeronautics and Space Administration, Washington, DC, USA, 1967b), pp. 221–230Google Scholar
  25. Gateway to Astronaut Photography of Earth (NASA Johnson Space Center, Houston, 2016), http://eol.jsc.nasa.gov. Accessed 2 Feb 2016
  26. J. Gebelein, D. Eppler, How Earth remote sensing from the International Space Station complements current satellite-based sensors. Int. J. Remote Sens. 27(13), 2613–2629 (2006)CrossRefGoogle Scholar
  27. L.E. Giddings, Index Maps for Gemini Earth Photography. NASA JSC-09581 (1975)Google Scholar
  28. J.R. Gill, Science Experiments Summary: National Aeronautics and Space Administration Special Publication 138 (National Aeronautics and Space Administration, Washington, DC, USA, 1967), pp. 291–305Google Scholar
  29. N.F. Glazovskiy, L.V. Dessinov, Russian visual observations of Earth: historical perspective, in Dynamic Earth Environments: Remote Sensing Observations from Shuttle-Mir Missions, ed. by K.P. Lulla, L.V. Dessinov, C.A. Evans, P.W. Dickerson, J.A. Robinson (Wiley, New York, 2000), pp. 15–24Google Scholar
  30. K. Green, M.W. Jackson, Timeline of key developments in platforms and sensors for Earth observations, in Earth Observing Platforms & Sensors, Manual of Remote Sensing, ed. by M.W. Jackson, vol. 1.1, 3rd edn. (American Society for Photogrammetry and Remote Sensing, Bethesda, 2009), pp. 1–48Google Scholar
  31. K. Green, C. Lopez, Basics of remote sensing systems, in Earth Observing Platforms & Sensors, Manual of Remote Sensing, ed. by M.W. Jackson, vol. 1.1, 3rd edn. (American Society for Photogrammetry and Remote Sensing, Bethesda, 2009), pp. 49–106Google Scholar
  32. J.M. Grimwood, Project Mercury: A Chronology. NASA SP-4001 (1963), http://history.nasa.gov/SP-4001/cover.htm. Accessed 2 Feb 2016
  33. J.M. Grimwood, B.C. Hacker, P.J. Vorzimer, Project Gemini Technology and Operations – A Chronology. NASA SP-4002 (1969), http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19690027123_1969027123.pdf. Accessed 2 Feb 2016
  34. A.J. Hartley, G.S. Weissmann, G.J. Nichols, G.L. Warwick, Large distributive fluvial systems: characteristics, distribution, and controls on development. J. Sediment. Res. 80, 167–183 (2010)CrossRefGoogle Scholar
  35. Hazards Data Distribution System (United States Geological Survey, Reston, 2016), http://hddsexplorer.usgs.gov/. Accessed 2 Feb 2016
  36. M.R. Helfert, C.A. Wood, The NASA Space Shuttle Earth Observations Office. Geocarto Int. 1, 15–23 (1989)CrossRefGoogle Scholar
  37. International Space Station Instrument Integration Interface (NASA Johnson Space Center, Houston, 2016), http://issearthserv.jsc.nasa.gov/i4.html. Accessed 2 Feb 2016
  38. A. Jehl, T. Farges, E. Blanc, Color pictures of sprites from non-dedicated observations on board the International Space Station. J. Geophys. Res. Space Phys. 118, 1–8 (2013)CrossRefGoogle Scholar
  39. E.M. Jones, K. Glover (eds.), Apollo Lunar Surface Journal (2010), http://history.nasa.gov/alsj/. Accessed 2 Feb 2016
  40. J.L. Kaltenbach, Science Report of the 70-Millimeter Earth Photography of the Apollo 6 Mission. NASA Technical Note S-217 (National Aeronautics and Space Administration, Houston, TX, USA, 1969a)Google Scholar
  41. J.L. Kaltenbach, Science Screening Report of the Apollo 7 Mission 70-Millimeter Photography and NASA Earth Resources Aircraft Mission 981 Photography. NASA TM-X-58029 (National Aeronautics and Space Administration, Houston, TX, USA, 1969b), http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19690021200_1969021200.pdf. Accessed 2 Feb 2016
  42. J.L. Kaltenbach, Apollo 9 Multispectral Photographic Information. National Aeronautics and Space Administration, Technical Memorandum X-1957 (1970), 34 pGoogle Scholar
  43. J.L. Kaltenbach, W.B. Lenoir, M.C. McEwen, R.A. Weitenhagen, V.R. Wilmarth, Skylab 4 Visual Observations Project Report. NASA TM-X-58142 (1974), http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19760009472_1976009472.pdf. Accessed 2 Feb 2016
  44. G.P. Kenney, Skylab Program, Earth Resources Experiment Package Sensor Performance Report Volume 7 (S190B): SL2, SL3 and SL4 Evaluations. NASA MSC-05528 (1974), http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19750008509_1975008509.pdf. Accessed 2 Feb 2016
  45. G.P. Kenney, Skylab Program, Earth Resources Experiment Package Sensor Performance Evaluation Volume 1 (S190A). NASA CR-144563 (1975)Google Scholar
  46. H.A. Kuehnel, Apollo Experience Report: Photographic Equipment and Operations During Manned Spaceflight Programs. NASA TN D-6972 (1972)Google Scholar
  47. C.C.M. Kyba, S. Garz, H. Kuechly, A. Sánchez de Miquel, J. Zamorano, J. Fischer, F. Hölker, High-resolution imagery of the Earth at night: new sources, opportunities and challenges. Remote Sens. 7, 7–23 (2015)Google Scholar
  48. J.P. Lockwood, R.W. Hazlett, Volcanoes: Global Perspectives (Wiley-Blackwell, Chichester, 2010)Google Scholar
  49. H.E. Lockwood, G.E. Sauer, Processing corrections for Skylab photographic imagery. Photogramm. Eng. Remote Sens. 41(4), 523–532 (1975)Google Scholar
  50. P.D. Lowman Jr., A Review of Photography of the Earth from Sounding Rockets and Satellites. NASA TN D-1868 (1964)Google Scholar
  51. P.D. Lowman Jr., Space Photography – A Review; Photogrammetric Engineering, vol. XXXI (American Society of Photogrammetry, Falls Church, VA, USA, 1965), pp. 76–86Google Scholar
  52. P.D. Lowman Jr., The Earth from Orbit: National Geographic Magazine, November, 1966 (National Geographic Society, Washington, DC, USA, 1966a), pp. 644–671Google Scholar
  53. P.D. Lowman Jr., Photography from space-geological applications. Ann. N. Y. Acad. Sci. 140, 99–106 (The New York Academy of Sciences, New York, NY, USA, 1966b)Google Scholar
  54. P.D. Lowman Jr., Geologic Orbital Photography – Experience from the Gemini Program. NASA X-644-68-228 (1968), http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19680018143_1968018143.pdf. Accessed 2 Feb 2016
  55. P.D. Lowman Jr., Geologic Analysis of Apollo 9 Multispectral Terrain Photography. NASA GSFC-X-644-69-423 (1969a)Google Scholar
  56. P.D. Lowman Jr., Geologic orbital photography: experience from the Gemini program. Photogrammetria 24(3–4), 77–106 (1969b)Google Scholar
  57. P.D. Lowman Jr., The Third Planet (Weltflugbid, Zurich, 1972)Google Scholar
  58. P.D. Lowman Jr., H.A. Tiedemann, Terrain Photography from Gemini Spacecraft Final Report. NASA X-644-71-15 (1971), http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19710008933_1971008933.pdf. Accessed 2 Feb 2016
  59. P.D. Lowman Jr., J.A. McDivitt, E.H. White, Terrain Photography on the Gemini IV Mission – Preliminary Report. NASA TN-D-3982 (1967), http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19670017945_1967017945.pdf. Accessed 2 Feb 2016
  60. P.D. Lowman Jr., H.V. Frey, W.E. Shenk, L. Dunkelman, Manual for 70 mm Hand-Held Photography from Skylab. NASA GSFC X-644-73-147 (1973)Google Scholar
  61. J.L. Mcniel, C.C. Devalcourt, Skylab-2 Handheld Photography Alphabetized Geographical Features List. NASA CR-134245 (1974a), http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19740014486_1974014486.pdf. Accessed 2 Feb 2016
  62. J.L. Mcniel, C.C. Devalcourt, Skylab-3 Handheld Photography Alphabetized Geographical Features List. NASA CR-140244 (1974b), http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19740024691_1974024691.pdf. Accessed 2 Feb 2016
  63. National Aeronautics and Space Administration, Gemini MidProgram Conference – Including Experiment Results. NASA SP-121 (1966)Google Scholar
  64. National Aeronautics and Space Administration, Earth Photographs from Gemini III, IV, and V. NASA SP-129 (1967a)Google Scholar
  65. National Aeronautics and Space Administration, Gemini Program Flight Summary Report: Gemini Missions I Through XII. NASA MSC-GR-66-5 (Revision A) (1967b)Google Scholar
  66. National Aeronautics and Space Administration, Gemini Summary Conference. NASA SP-138 (1967c), http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19680005472_1968005472.pdf. Accessed 2 Feb 2016
  67. National Aeronautics and Space Administration, Apollo AS-502 Mission Data and Information List, 70mm Color Photography. NASA Mapping Sciences Branch, MSC (1968a), http://apollo.sese.asu.edu/SUPPORT_DATA/ap06_index.pdf. Accessed 2 Feb 2016
  68. National Aeronautics and Space Administration, Apollo 6 Mission Report. NASA MSC-PA-R-68-9 (1968b)Google Scholar
  69. National Aeronautics and Space Administration, Apollo 7 Mission Report. NASA MSC-PA-R-68-15 (1968c)Google Scholar
  70. National Aeronautics and Space Administration, Earth Photographs from Gemini VI Through XII. NASA SP-171 (1968d)Google Scholar
  71. National Aeronautics and Space Administration, Apollo 7 Mission Data and Information List, 70mm Color Photography. NASA Mapping Sciences Branch, MSC (1969a). http://apollo.sese.asu.edu/SUPPORT_DATA/ap07_index.pdf. Accessed 2 Feb 2016
  72. National Aeronautics and Space Administration, Apollo 9 Mission Report. NASA MSC-PA-R-69-2 (1969b)Google Scholar
  73. National Aeronautics and Space Administration, Apollo 9 Photographic Plotting and Indexing Report (Including Aircraft Underflights). NASA Mapping Sciences Laboratory, MSC (1969c)Google Scholar
  74. National Aeronautics and Space Administration, Earth Resources Program Synopsis of Activity (Manned Spacecraft Center, Houston, 1970a)Google Scholar
  75. National Aeronautics and Space Administration, Ecological Surveys from Space. NASA SP-230 (1970b), http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19700017671_1970017671.pdf. Accessed 2 Feb 2016
  76. National Aeronautics and Space Administration, Handbook of Pilot Operational Equipment for Manned Space Flight. NASA CD42-A/SL-997 (1973a), http://history.nasa.gov/alsj/JSC-07210PltOpsEquip.pdf. Accessed 2 Feb 2016
  77. National Aeronautics and Space Administration, Skylab Program-EREP Investigator’s Information Handbook. NASA MSC-07874 (1973b)Google Scholar
  78. National Aeronautics and Space Administration, Apollo-Soyuz Test Project Visual Observations Debriefing. NASA JSC-09920 (1974a)Google Scholar
  79. National Aeronautics and Space Administration, Skylab Earth Resources Data Catalog. NASA JSC-09016 (1974b), http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19750012726_1975012726.pdf. Accessed 2 Feb 2016
  80. National Aeronautics and Space Administration, Apollo-Soyuz Test Project: Preliminary Science Report. NASA TM-X-58173 (1976), http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19760015986_1976015986.pdf. Accessed 2 Feb 2016
  81. National Aeronautics and Space Administration, Skylab Explores the Earth. NASA SP-380 (1977), http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19820004619_1982004619.pdf. Accessed 2 Feb 2016
  82. National Aeronautics and Space Administration, Reference Guide to the International Space Station. NASA NP-2015-05-022-JSC (2015), https://www.nasa.gov/sites/default/files/atoms/files/np-2015-05-022-jsc-iss-guide-2015-update-111015-508c.pdf. Accessed 2 Feb 2016
  83. O.W. Nicks, This Island Earth. NASA SP-250 (1970), http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19710003091_1971003091.pdf. Accessed 2 Feb 2016
  84. A. Pesce, Gemini Space Photographs of Libya and Tibesti: A Geological and Geographical Analysis (Petroleum Exploration Society of Libya, Tripoli, 1968)Google Scholar
  85. J.A. Robinson, B. McRay, K.P. Lulla, Twenty-eight years of urban growth in North America quantified by analysis of photographs from Apollo, Skylab, and Shuttle-Mir, in Dynamic Earth Environments: Remote Sensing Observations from Shuttle-Mir Missions, ed. by K.P. Lulla, L.V. Dessinov (Wiley, New York, 2000), pp. 25–41Google Scholar
  86. J.A. Robinson, D.A. Liddle, C.A. Evans, D.L. Amsbury, Astronaut-acquired orbital photographs as digital data for remote sensing: spatial resolution. Int. J. Remote Sens. 23(20), 4403–4438 (2002)CrossRefGoogle Scholar
  87. Sally Ride EarthKAM Project (U.S. Space & Rocket Center, Huntsville, 2016), https://www.earthkam.org/home. Accessed 2 Feb 2016
  88. R.A. Schowengerdt, P.N. Slater, Final Postflight Calibration Report on Apollo 9 Multiband Photography Experiment S065, Technical Memorandum 3 (Optical Sciences Center, University of Arizona, Tucson, 1972)Google Scholar
  89. N.M. Short, P.D. Lowman Jr., Earth Observations from Space: Outlook for the Geological Sciences. NASA X-650-73-316 (1973), http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19740004044_1974004044.pdf. Accessed 2 Feb 2016
  90. W.L. Stefanov, Astronaut photography: hands-on remote sensing of the Earth. Phi Kappa Phi Forum 88(1), 2–7 (2008)Google Scholar
  91. W.L. Stefanov, C.A. Evans, Data collection for disaster response from the International Space Station. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 40(7/W3), 851–855 (2015)CrossRefGoogle Scholar
  92. W.L. Stefanov, J. Vande Castle, Ecological Landscape Classification Using Astronaut Photography. Eos Transactions of the American Geophysical Union 87(52), Fall Meeting Supplement, Abstract B41A-0155 (2006)Google Scholar
  93. W.L. Stefanov, J.A. Robinson, S.A. Spraggins, Vegetation measurements from digital astronaut photography. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 34(7/W9), 185–189 (2003)Google Scholar
  94. R.E. Stevenson, Observations from Skylab of mesoscale turbulence in ocean currents. Nature 250, 638–640 (1974)CrossRefGoogle Scholar
  95. R.E. Stevenson, R.M. Nelson, An Index of Ocean Features Photographed from Gemini Spacecraft. Contribution 253 (Bureau of Commercial Fisheries Biological Laboratory, Galveston, 1968)Google Scholar
  96. L.S. Swenson Jr., J.M. Grimwood, C.C. Alexander, This New Ocean: A History of Project Mercury. NASA SP-4201 (1966), http://history.nasa.gov/SP-4201/toc.htm. Accessed 2 Feb 2016
  97. R.W. Underwood, Color photography from space, in Manual of Color Aerial Photography, ed. by J.T. Smith Jr., A. Anson, 1st edn. (American Society of Photogrammetry, Falls Church, 1968), pp. 365–379Google Scholar
  98. R.W. Underwood, J.W. Holland, Skylab 2: Photographic Index and Scene Identification. NASA JL12-601 (1973a), http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19740007997_1974007997.pdf. Accessed 2 Feb 2016
  99. R.W. Underwood, J.W. Holland, Skylab 3: Photographic Index and Scene Identification. NASA JL12-602 (1973b), http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19740007948_1974007948.pdf. Accessed 2 Feb 2016
  100. R.W. Underwood, J.W. Holland, Skylab 4: Photographic Index and Scene Identification. NASA JL12-603 (1974), http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19750019464_1975019464.pdf. Accessed 2 Feb 2016
  101. L.A. Vanderbloemen, W.L. Stefanov, C.A. Evans, A Researcher’s Guide to: International Space Station Earth Observations. Johnson Space Center Publication NP-2013-06-011-JSC (2014), http://www.nasa.gov/sites/default/files/files/Earth-Observation-Mini-Book-042814-508.pdf. Accessed 2 Feb 2016
  102. E. Venzke, S.K. Sennert, R. Wunderman, Reports from the Smithsonian’s Global Volcanism Network, June 2009. Bull. Volcanol. 71(10), 1211–1212 (2009)CrossRefGoogle Scholar
  103. A. Wiggins, K. Crowston, Developing a conceptual model of virtual organisations for citizen science. Int. J. Organ. Des. Eng. 1(1–2), 148–162 (2010)Google Scholar
  104. D.E. Wilhelms, To a Rocky Moon: A Geologist’s History of Lunar Exploration (University of Arizona Press, Tucson, 1993)Google Scholar
  105. M.J. Wilkinson, Fluvial sediment accommodation and mesoscale architecture – some neglected perspectives, in First International Conference on Mars Sedimentology and Stratigraphy, Abstract 6065 (2010), http://www.lpi.usra.edu/meetings/marssed2010/pdf/6065.pdf. Accessed 2 Feb 2016
  106. M.J. Wilkinson, L.G. Marshall, J.G. Lundberg, River behavior on megafans and potential influences on diversification and distribution of aquatic organisms. J. S. Am. Earth Sci. 21, 151–172 (2006)CrossRefGoogle Scholar
  107. M.J. Wilkinson, L.G. Marshall, J.G. Lundberg, M.H. Kreslavsky, Megafan environments in northern South America and their impact on Amazon Neogene ecosystems, in Amazonia, Landscape and Species Evolution, ed. by C. Hoorn, F.P. Wesselingh (Blackwell, Chichester, 2010), pp. 162–184Google Scholar
  108. D.M. Winker, R.H. Couch, M.P. McCormick, An overview of LITE: NASA’s LIDAR In-space Technology Experiment. Proc. IEEE 84(2), 164–180 (1996)CrossRefGoogle Scholar
  109. F.J. Wobber, Orbital photography: applied Earth survey tool. Photogr. Appl. Sci. Technol. 2(7), 21–29 (1968), 56Google Scholar
  110. D. Woods, Apollo Flight Journal (2009), http://history.nasa.gov/afj/. Accessed 2 Feb 2016
  111. E.O. Zeitler, T.G. Rogers, The Gemini Program Physical Sciences Experiments Summary. NASA TM X-58075 (1971), http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19720003207_1972003207.pdf. Accessed 2 Feb 2016

Copyright information

© Springer Science+Business Media New York (outside the USA) 2016

Authors and Affiliations

  • William L. Stefanov
    • 1
  • Cynthia A. Evans
    • 1
  • Susan K. Runco
    • 1
  • M. Justin Wilkinson
    • 2
  • Melissa D. Higgins
    • 3
  • Kimberly Willis
    • 4
  1. 1.Astromaterials Research and Exploration Science Division, Exploration Integration and Science DirectorateNASA Johnson Space CenterHoustonUSA
  2. 2.Texas State University/Jacobs Contract at Astromaterials Research and Exploration Science Division, Exploration Integration and Science DirectorateNASA Johnson Space CenterHoustonUSA
  3. 3.Jacobs at Astromaterials Research and Exploration Science Division, Exploration Integration and Science DirectorateNASA Johnson Space CenterHoustonUSA
  4. 4.Oceaneering at Astromaterials Research and Exploration Science Division, Exploration Integration and Science DirectorateNASA Johnson Space CenterHoustonUSA

Personalised recommendations