Encyclopedia of Metagenomics

Living Edition
| Editors: Karen E. Nelson

Microbial Diversity and Novelty Along Salinity Gradients

  • Emilio Ortega Casamayor
  • Xavier Triadó-Margarit
Living reference work entry
DOI: https://doi.org/10.1007/978-1-4614-6418-1_805-1



Microbial diversity is determined by the genetic diversity of ribosomal genes 16S for bacteria and archaea and 18S for protists. Microbial novelty indicates the uniqueness of the identity level of a given sequence based on BLAST search comparison against the ribosomal gene sequences previously reported in GenBank (usually <97% identity). The gradient of saline concentrations explored here ranged c. 20 times from 20 up to 370 g/L, when NaCl precipitates.


Coastal salterns and inland salt lakes are widely distributed ecosystems around the world. In the Mediterranean region, there has been a long tradition to use solar saltern systems for salt production in seawater evaporation ponds. Multipond solar salterns are semi-artificial coastal systems designed to harvest common salt (NaCl) from seawater. Sequential precipitation of CaCO 3 and CaSO 4occurs during the first stages of...


Biomass Magnesium Agar Lithium Phytoplankton 
This is a preview of subscription content, log in to check access


  1. Benlloch S, López-López A, Casamayor EO, et al. Prokaryotic genetic diversity throughout the salinity gradient of a coastal solar saltern. Environ Microbiol. 2002;4:349–60.PubMedCrossRefGoogle Scholar
  2. Casamayor EO, Massana R, Benlloch S, et al. Changes in archaeal, bacterial and eukaryal assemblages along a salinity gradient by comparison of genetic fingerprinting methods in a multi-pond solar saltern. Environ Microbiol. 2002;4:338–48.PubMedCrossRefGoogle Scholar
  3. Casamayor EO, Triadó-Margarit X, Castañeda C. Microbial biodiversity in saline shallow lakes of the Monegros Desert, Spain. FEMS Microbiol Ecol. 2013;85:503–18.PubMedCrossRefGoogle Scholar
  4. Demergasso C, Casamayor EO, Galleguillos P, et al. Distribution of prokaryotic genetic diversity in athalassohaline lakes from the Atacama Desert, Northern Chile. FEMS Microbiol Ecol. 2004;48:57–69.PubMedCrossRefGoogle Scholar
  5. Demergasso C, Escudero L, Casamayor EO, et al. Novelty and spatio-temporal heterogeneity in the bacterial diversity of hypersaline Lake Tebenquiche (Salar de Atacama). Extremophiles. 2008;12:491–504.PubMedCrossRefGoogle Scholar
  6. Estrada M, Hendriksen P, Gasol JM, et al. Diversity of planktonic photoautotrophic microorganisms along a salinity gradient as depicted by microscopy, flow cytometry, pigment analysis and DNA-based methods. FEMS Microbiol Ecol. 2004;49:281–93.PubMedCrossRefGoogle Scholar
  7. Gasol JM, Casamayor EO, Join I, et al. Control of heterotrophic prokaryotic abundance and growth rate in hypersaline planktonic environments. Aquat Microb Ecol. 2004;34:193–206.CrossRefGoogle Scholar
  8. Guixa-Boixereu N, Calderón-Paz JI, Heldal M, et al. Viral lysis and bacterivory as prokaryotic loss factors along a salinity gradient. Aquat Microb Ecol. 1996;11:215–27.CrossRefGoogle Scholar
  9. Oren A. Halophilic microorganisms and their environments. Dordrecht: Kluwer, Scientific Publishers; 2002.CrossRefGoogle Scholar
  10. Triadó-Margarit X, Casamayor EO. High genetic diversity and high novelty in planktonic protists inhabiting inland and coastal high salinity water bodies. FEMS Microbiol Ecol. 2013;85:27–36.PubMedCrossRefGoogle Scholar
  11. Williams WD. The largest, highest and lowest lakes of the world: saline lakes. Verh Internat Verein Limnol. 1996;26:61–79.Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Emilio Ortega Casamayor
    • 1
  • Xavier Triadó-Margarit
    • 1
  1. 1.Biodiversity & Biogeodynamics GroupCenter for Advanced Studies of Blanes-Spanish Council for Research, CEAB-CSICGironaSpain