Encyclopedia of Metagenomics

Living Edition
| Editors: Karen E. Nelson

Terrestrial Vertebrate Animal Metagenomics, Non-domesticated Macropodidae, Kangaroo

  • Athol Klieve
Living reference work entry
DOI: https://doi.org/10.1007/978-1-4614-6418-1_8-3


Marsupial, wildtype.


Microbial ecosystems exist within all living creatures, and knowledge of the diversity and function is both intrinsically important to understanding biological processes and likely to benefit human activities.


This review will focus on current knowledge of the microbial ecosystems associated with a group of largely Australian macropod marsupials – the kangaroos. Kangaroos encompass a large and diverse group of grazing and browsing herbivores. The primary interest in their associated microbial ecosystems has revolved around nutrition and digestion. The macropod marsupials ferment feed material (plant biomass) in an enlarged pre-gastric chamber, the forestomach, prior to further digestion (Hume 1982). This chamber is functionally analogous to the rumen in ruminant livestock, but both groups of animals evolved separately and therefore with different microbial species filling similar niches, over many millions of years. Given the...


Methane Emission Microbial Ecosystem Metagenomic Study Tammar Wallaby mcrA Gene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.


  1. Chhour K-L, Hinds LA, Deane EM, et al. The microbiome of the cloacal openings of the urogenital and anal tracts of the tammar wallaby, Macropus eugenii. Microbiology. 2008;154:1535–43.PubMedCrossRefGoogle Scholar
  2. Chhour K-L, Hinds LA, Jacques NA, et al. An observational study of the microbiome of the maternal pouch and saliva of the tammar wallaby, Macropus eugenii, and of the gastrointestinal tract of the pouch young. Microbiology. 2010;156:798–808.PubMedCrossRefGoogle Scholar
  3. Dehority BA. A new family of entodiniomorphid protozoa from the marsupial forestomach, with descriptions of a new genus and five new species. J Eukaryot Microbiol. 1996;43:285–95.PubMedCrossRefGoogle Scholar
  4. Dellow DW, Hume ID, Clarke RTJ, et al. Microbial activity in the forestomach of free-living macropod marsupials: comparisons with laboratory studies. Aust J Zool. 1988;36:383–95.CrossRefGoogle Scholar
  5. Evans PN, Hinds LA, Sly LI, et al. Community composition and density of methanogens in the foregut of the tammar wallaby (Macropus eugenii). Appl Environ Microbiol. 2009;75:2598–602.PubMedCentralPubMedCrossRefGoogle Scholar
  6. Gagen EJ, Denman SE, Padmanabha J, et al. Functional gene analysis suggests different acetogens populations in the bovine rumen and tammar wallaby forestomach. Appl Environ Microbiol. 2010;76:7785–95.PubMedCentralPubMedCrossRefGoogle Scholar
  7. Gulino L-M, Ouwerkerk D, Kang AYH, et al. Shedding light on the microbial community of the macropod foregut using 454-amplicon pyrosequencing. PLoS ONE. 2013; 8: e61463.PubMedCentralPubMedGoogle Scholar
  8. Hume ID. Marsupial nutrition. Cambridge, UK: Cambridge University Press; 1982.Google Scholar
  9. Kempton TJ, Murray RM, Leng RA. Methane production and digestibility measurements in grey kangaroo and sheep. Aust J Biol Sci. 1976;29:209–14.PubMedGoogle Scholar
  10. Klieve AV. Bacteriophages from the forestomachs of Australian marsupials. Appl Environ Microbiol. 1991;57:3660–3.PubMedCentralPubMedGoogle Scholar
  11. Klieve AV. Gut-inhabiting fungi of Australian herbivores. In: Fungi of Australia, vol. 1B Introduction – fungi in the environment. Australian Biological Resources Study, Canberra (ABRS/CSIRO Australia); 1996. p. 203–12.Google Scholar
  12. Klieve AV, O’Leary MN, McMillen L, et al. Ruminococcus bromii, identification and isolation as a dominant community member in the rumen of cattle fed a high barley diet. J Appl Microbiol. 2007;103:2065–73.PubMedCrossRefGoogle Scholar
  13. Klieve AV, Ouwerkerk D, Maguire AJ. Archaea in the foregut of macropod marsupials: PCR and amplicon sequence based observations. J Appl Microbiol. 2012;113:1065–75.PubMedCrossRefGoogle Scholar
  14. Madsen J, Bertelsen MF. Methane production by red-necked wallabies (Macropus rufogriseus). J Anim Sci. 2012;90:1364–70.PubMedCrossRefGoogle Scholar
  15. Moir RJ, Sommers M, Sharman G, et al. Ruminant-like digestion in a marsupial. Nature. 1954;173:269–70.PubMedCrossRefGoogle Scholar
  16. Obendorf DL. The macropodid oesophagus IV. Observations on the protozoan fauna of the macropodid stomach and oesophagus. Aust J Biol Sci. 1984;37:117–22.Google Scholar
  17. Ouwerkerk D, Klieve AV, Forster RJ, et al. Characterization of culturable anaerobic bacteria from the forestomach of an Eastern Grey Kangaroo, Macropus giganteus. Lett Appl Microbiol. 2005;41:327–33.PubMedCrossRefGoogle Scholar
  18. Ouwerkerk D, Maguire AJ, McMillen L, et al. Hydrogen utilising bacteria from the forestomach of eastern grey (Macropus giganteus) and red (Macropus rufus) kangaroos. Anim Prod Sci. 2009;49:1043–51.CrossRefGoogle Scholar
  19. Pope PB, Denman SE, Jones M, et al. Adaptation to herbivory by the tammar wallaby includes bacterial and glycoside hydrolase profiles different to other herbivores. Proc Natl Acad Sci U S A. 2010;107:14793–8.PubMedCentralPubMedCrossRefGoogle Scholar
  20. Pope PB, Smith W, Denman SE, et al. Isolation of Succinivibrionaceae implicated in low methane emissions from tammar wallabies. Science. 2011. doi:10.1126/science.1205760.Google Scholar
  21. Tyndale-Biscoe H. Life of Marsupials. Collingwood: CSIRO Publishing; 2005.Google Scholar
  22. Von Engelhardt W, Wolter S, Lawrenz H, et al. Production of methane in two non-ruminant herbivores. Comp Biochem Physiol A. 1978;60:309–11.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.School of Agriculture and Food SciencesUniversity of QueenslandGattonAustralia