Encyclopedia of Metagenomics

Living Edition
| Editors: Karen E. Nelson

Mammoth and Woolly Rhinoceros, Metagenomics of

  • Nikolai V. Ravin
  • Egor B. Prokhortchouk
  • Konstantin G. Skryabin
Living reference work entry
DOI: https://doi.org/10.1007/978-1-4614-6418-1_744-3



Metagenomics is the study of metagenome, a composite of the animal genes and genes present in the genomes of microorganisms colonizing their bodies. More narrow definition of the term metagenome is limited to genomes of only microbial community (microbiome).


The subject of this entry is to outline the information available on the composition of the gut microbiomes of two extinct herbivorous animals – woolly mammoth (Mammuthus primigenius) and woolly rhinoceros (Coelodonta antiquitatis). The microbiome of an intestinal tract plays important role in the animal nutrition and overall health. In particular, herbivores have evolved to maintain microbial consortia that coordinate relatively rapid rates of degradation of complex plant carbohydrates under anaerobic conditions (Flint 1997). The coevolution of herbivorous mammalian lineages and their gut microbes involved enlargement of the foregut or hindgut to...


Microbial Community Taxonomic Assignment Cellulolytic Bacterium Intestinal Microbiomes Clostridium Beijerinckii 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.


  1. Boeskorov GG, Lazarev PA, Bakulina NT, Shchelchkova MV, Davydov SP, Solomonov NG. Preliminary study of a mummified woolly rhinoceros from the lower reaches of the Kolyma River. Dokl Biol Sci. 2009;424:53–6.PubMedCrossRefGoogle Scholar
  2. Cousin MA. Presence and activity of psychrotrophic microorganisms in milk and dairy products: a review. J Food Prot. 1982;45:172–207.Google Scholar
  3. Field EK, D’Imperio S, Miller AR, Van Engelen MR, Gerlach R, Lee BD, Apel WA, Peyton BM. Application of molecular techniques to elucidate the influence of cellulosic waste on the bacterial community structure at a simulated low-level-radioactive-waste site. Appl Environ Microbiol. 2010;76:3106–15.PubMedCentralPubMedCrossRefGoogle Scholar
  4. Fisher DC, Tikhonov AN, Kosintsev PA, Rountrey AN, Buigues B, Van Der Plicht J. Anatomy, death, and preservation of a woolly mammoth (Mammuthus primigenius) calf, Yamal Peninsula, northwest Siberia. Quat Int. 2012;255:94–105.CrossRefGoogle Scholar
  5. Flint HJ. The rumen microbial ecosystem – some recent developments. Trends Microbiol. 1997;5:483–8.PubMedCrossRefGoogle Scholar
  6. Hofreiter M, Jaenicke V, Serre D, Haeseler Av A, Paabo S. DNA sequences from multiple amplifications reveal artifacts induced by cytosine deamination in ancient DNA. Nucleic Acids Res. 2001;29:4793–9.PubMedCentralPubMedCrossRefGoogle Scholar
  7. Kosintsev PA, Lapteva EG, Trofimova SS, Zanina OG, Tikhonov AN, van der Plicht J. The content of the intestines of mammoth calf (Mammuthus primigenius Blumenbach, 1799) from the Yuribei River (Yamal Peninsula). Dokl Biol Sci. 2010;432:556–8.CrossRefGoogle Scholar
  8. Larue R, Yu Z, Parisi VA, Egan AR, Morrison M. Novel microbial diversity adherent to plant biomass in the herbivore gastrointestinal tract, as revealed by ribosomal intergenic spacer analysis and rrs gene sequencing. Environ Microbiol. 2005;7:530–43.PubMedCrossRefGoogle Scholar
  9. Ley RE, Hamady M, Lozupone C, Turnbaugh PJ, Ramey RR, Bircher JS, Schlegel ML, Tucker TA, Schrenzel MD, Knight R, Gordon JI. Evolution of mammals and their gut microbes. Science. 2008;320:1647–51.PubMedCentralPubMedCrossRefGoogle Scholar
  10. Mardanov AV, Bulygina ES, Nedoluzhko AV, Kadnikov VV, Beletskii AV, Tsygankova SV, Tikhonov AN, Ravin NV, Prokhorchuk EB, Skryabin KG. Molecular analysis of the intestinal microbiome composition of mammoth and woolly rhinoceros. Dokl Biochem Biophys. 2012;445:203–6.PubMedCrossRefGoogle Scholar
  11. Miller W, Drautz DI, Ratan A, Pusey B, Qi J, Lesk AM, Tomsho LP, Packard MD, Zhao F, Sher A, Tikhonov A, Raney B, Patterson N, Lindblad-Toh K, Lander ES, Knight JR, Irzyk GP, Fredrikson KM, Harkins TT, Sheridan S, Pringle T, Schuster SC. Sequencing the nuclear genome of the extinct woolly mammoth. Nature. 2008;456:387–90.PubMedCrossRefGoogle Scholar
  12. Nelson KE, Zinder SH, Hance I, Burr P, Odongo D, Wasawo D, Odenyo A, Bishop R. Phylogenetic analysis of the microbial populations in the wild herbivore gastrointestinal tract: insights into an unexplored niche. Environ Microbiol. 2003;5:1212–20.PubMedCrossRefGoogle Scholar
  13. Overballe-Petersen S, Orlando L, Willerslev E. Next-generation sequencing offers new insights into DNA degradation. Trends Biotechnol. 2012;30:364–8.PubMedCrossRefGoogle Scholar
  14. Poinar HN, Schwarz C, Qi J, Shapiro B, Macphee RD, Buigues B, Tikhonov A, Huson DH, Tomsho LP, Auch A, Rampp M, Miller W, Schuster SC. Metagenomics to paleogenomics: large-scale sequencing of mammoth DNA. Science. 2006;311(5759):392–4.PubMedCrossRefGoogle Scholar
  15. Van Geel B, Fisher DC, Rountrey AN, Van Arkel J, Duivenvoorden JF, Nieman AM, Van Reenen GBA, Tikhonov AN, Buiguese B, Gravendeel B. Palaeo-environmental and dietary analysis of intestinal contents of a mammoth calf (Yamal Peninsula, northwest Siberia). Quat Sci Rev. 2011;30:3935–46.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Nikolai V. Ravin
    • 1
  • Egor B. Prokhortchouk
    • 2
  • Konstantin G. Skryabin
    • 2
  1. 1.Centre of BioengineeringRussian Academy of SciencesMoscowRussia
  2. 2.Centre “Bioengineering” of the Russian Academy of SciencesMoscowRussia