Skip to main content

Protein-Coding Genes as Alternative Markers in Microbial Diversity Studies

  • Living reference work entry
  • First Online:
Encyclopedia of Metagenomics
  • 197 Accesses

Synonyms

Automated Phylogenomic Inference Application (AMPHORA)

Introduction

The small ribosomal unit RNA (SSU rRNA or 16S rRNA) has been widely used in microbial systematic and diversity studies. The appeal of using 16S rRNA gene as a marker gene is numerous. First of all, it is distributed in every single cellular organism. Secondly, because regions of 16S rRNA sequence are highly conserved, 16S rRNA gene can be PCR amplified from a wide diversity of taxa using “universal” primers and sequenced, bypassing the need to isolate and culture the organisms in question. Consequently, millions of 16S rRNA reference sequences are available for microbial classification and identification (Cole 2009).

Although 16S rRNA has been the “gold standard” in microbial diversity studies, it has several shortcomings. First, because 16S rRNA only makes up a tiny fraction of a genome (~0.1 %), its application as a marker gene in classifying metagenomic sequences is seriously limited. Secondly, the widely...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Acinas SG, Sarma-Rupavtarm R, Klepac-Ceraj V, et al. PCR-induced sequence artifacts and bias: insights from comparison of two 16S rRNA clone libraries constructed from the same sample. Appl Environ Microbiol. 2005;71:8966–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Berger SA, Krompass D, Stamatakis A. Performance, accuracy, and Web server for evolutionary placement of short sequence reads under maximum likelihood. Syst Biol. 2011;60:291–302.

    Article  PubMed Central  PubMed  Google Scholar 

  • Cammarano P, Creti R, Sanangelantoni AM, et al. The archaea monophyly issue: a phylogeny of translational elongation factor G(2) sequences inferred from an optimized selection of alignment positions. J Mol Evol. 1999;49:524–37.

    Article  CAS  PubMed  Google Scholar 

  • Castresana J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol. 2000;17:540–52.

    Article  CAS  PubMed  Google Scholar 

  • Cole JR, Wang Q, Cardenas E, et al. The ribosomal database project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res. 2009;37:D141–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Eddy SR. Accelerated profile HMM searches. PLoS Comput Biol. 2011;7:e1002195.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Grundy WN, Naylor GJ. Phylogenetic inference from conserved sites alignments. J Exp Zool. 1999;285:128–39.

    Article  CAS  PubMed  Google Scholar 

  • Huson DH, Auch AF, Qi J, et al. MEGAN analysis of metagenomic data. Genome Res. 2007;17:377–86.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hwang UW, Kim W, Tautz D, et al. Molecular phylogenetics at the Felsenstein zone: approaching the Strepsiptera problem using 5.8S and 28S rDNA sequences. Mol Phylogenet Evol. 1998;9:470–80.

    Article  CAS  PubMed  Google Scholar 

  • Jain R. Horizontal gene transfer among genomes: the complexity hypothesis. Proc Natl Acad Sci. 1999;96:3801–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kembel SW, Wu M, Eisen JA, et al. Incorporating 16S gene copy number information improves estimates of microbial diversity and abundance. PLoS Comput Biol. 2012;8:e1002743.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Koski LB, Golding GB. The closest BLAST hit is often not the nearest neighbor. J Mol Evol. 2001;52:540–2.

    Article  CAS  PubMed  Google Scholar 

  • Lake JA. The order of sequence alignment can bias the selection of tree topology. Mol Biol Evol. 1991;8:378–85.

    CAS  PubMed  Google Scholar 

  • Landan G, Graur D. Heads or tails: a simple reliability check for multiple sequence alignments. Mol Biol Evol. 2007;24:1380–3.

    Article  CAS  PubMed  Google Scholar 

  • Loytynoja A, Goldman N. Phylogeny-aware gap placement prevents errors in sequence alignment and evolutionary analysis. Science. 2008;320:1632–5.

    Article  PubMed  Google Scholar 

  • Ludwig W, Klenk H-P. Overview: a phylogenetic backbone and taxonomic framework for procaryotic systematics. In: Boone DR, Castenholz RW, Garrity GM, editors. Bergey’s manual of systematic bacteriology, vol. 1. New York: Springer-Verlag; 2000. p. 49–65.

    Google Scholar 

  • Matsen FA, Kodner RB, Armbrus EV. pplacer: linear time maximum-likelihood and Bayesian phylogenetic placement of sequences onto a fixed reference tree. BMC Bioinforma. 2010;11.

    Google Scholar 

  • Morris RM, Rappe MS, Connon SA, et al. SAR11 clade dominates ocean surface bacterioplankton communities. Nature. 2002;420:806–10.

    Article  CAS  PubMed  Google Scholar 

  • Morrison DA, Ellis JT. Effects of nucleotide sequence alignment on phylogeny estimation: a case study of 18S rDNAs of apicomplexa. Mol Biol Evol. 1997;14:428–41.

    Article  CAS  PubMed  Google Scholar 

  • Pagani I, Liolios K, Jansson J, et al. The Genomes OnLine Database (GOLD) v.4: status of genomic and metagenomic projects and their associated metadata. Nucleic Acids Res. 2012;40:D571–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rusch DB, Halpern AL, Sutton G, et al. The sorcerer II global ocean sampling expedition: northwest Atlantic through eastern tropical Pacific. PLoS Biol. 2007;5:e77.

    Article  PubMed Central  PubMed  Google Scholar 

  • Santos SR, Ochman H. Identification and phylogenetic sorting of bacterial lineages with universally conserved genes and proteins. Environ Microbiol. 2004;6:754–9.

    Article  CAS  PubMed  Google Scholar 

  • Sorek R, Zhu Y, Creevey CJ, et al. Genome-wide experimental determination of barriers to horizontal gene transfer. Science. 2007;318:1449–52.

    Article  CAS  PubMed  Google Scholar 

  • Wu M, Eisen JA. A simple, fast, and accurate method of phylogenomic inference. Genome Biol. 2008;9:R151.

    Article  PubMed Central  PubMed  Google Scholar 

  • Wu M, Scott AJ. Phylogenomic analysis of bacterial and archaeal sequences with AMPHORA2. Bioinformatics. 2012;28:1033–4.

    Article  CAS  PubMed  Google Scholar 

  • Wu M, Chatterji S, Eisen JA. Accounting for alignment uncertainty in phylogenomics. PLoS ONE. 2012;7(1):e30288.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this entry

Cite this entry

Wu, M. (2013). Protein-Coding Genes as Alternative Markers in Microbial Diversity Studies. In: Nelson, K. (eds) Encyclopedia of Metagenomics. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6418-1_734-3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-6418-1_734-3

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-6418-1

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics