Encyclopedia of Metagenomics

Living Edition
| Editors: Karen E. Nelson

Phylogenetics, Overview

Phylogenetics: A Root and Branch Analysis of the Tree of Life
  • Roy Sleator
Living reference work entry
DOI: https://doi.org/10.1007/978-1-4614-6418-1_708-9

Synonyms

Definition

Phylogenetics, derived from the Greek terms phylon (meaning “tribe”) and genetikos (meaning “genitive” or origin), is the study of the evolutionary history of species, organisms, genes, or proteins through the construction and analysis of mathematical entities known as trees or phylogenies.

Introduction

Darwin’s The Origin of Species marked the birth of phylogeny, a discipline whose primary aims are to classify all living organisms, grouping all extant descendants of a given ancestor within specific groups or clades; to provide insights into the shared properties of members within each clade; and to allow retro direction, i.e., the ability to infer ancestral properties based on observable characteristics of extant organisms.

A significant limitation of traditional morphology-based phylogeny approaches is the fact that reconstructing ancient evolutionary events requires a vast sum of character changes. Furthermore, many of these morphological...

Keywords

Maximum Parsimony Lateral Gene Transfer Motif Finding Algorithm Extant Organism Mutational Saturation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.

References

  1. Andersson JO, Sjogren AM, Horner DS, Murphy CA, Dyal PL, Svard SG, Logsdon JR JM, Ragan MA, Hirt RP, Roger AJ. A genomic survey of the fish parasite Spironucleus salmonicida indicates genomic plasticity among diplomonads and significant lateral gene transfer in eukaryote genome evolution. BMC Genomics. 2007;8:51.PubMedCentralPubMedCrossRefGoogle Scholar
  2. Archibald JM, Rogers MB, Toop M, Ishida K, Keeling PJ. Lateral gene transfer and the evolution of plastid-targeted proteins in the secondary plastid-containing alga Bigelowiella natans. Proc Natl Acad Sci U S A. 2003;100:7678–83.PubMedCentralPubMedCrossRefGoogle Scholar
  3. Brocchieri L. Phylogenetic inferences from molecular sequences: review and critique. Theor Popul Biol. 2001;59:27–40.PubMedCrossRefGoogle Scholar
  4. Delsuc F, Brinkmann H, Philippe H. Phylogenomics and the reconstruction of the tree of life. Nat Rev Genet. 2005;6:361–75.PubMedCrossRefGoogle Scholar
  5. Forterre P, Gadelle D. Phylogenomics of DNA topoisomerases: their origin and putative roles in the emergence of modern organisms. Nucl Acids Res. 2009;37:679–92.PubMedCentralPubMedCrossRefGoogle Scholar
  6. Hernandez Fernandez M, Vrba ES. A complete estimate of the phylogenetic relationships in Ruminantia: a dated species-level supertree of the extant ruminants. Biol Rev Camb Philos Soc. 2005;80:269–302.PubMedCrossRefGoogle Scholar
  7. Karlin S, Bucher P, Brendel V, Altschul SF. Statistical methods and insights for protein and DNA sequences. Annu Rev Biophys Biophys Chem. 1991;20:175–203.PubMedCrossRefGoogle Scholar
  8. Karlin S, Zuker M, Brocchieri L. Measuring residue associations in protein structures. Possible implications for protein folding. J Mol Biol. 1994;239:227–48.PubMedCrossRefGoogle Scholar
  9. Lawrence JG. Gene transfer in bacteria: speciation without species? Theor Popul Biol. 2002;61:449–60.PubMedCrossRefGoogle Scholar
  10. Lawrence CE, Altschul SF, Boguski MS, Liu JS, Neuwald AF, Wootton JC. Detecting subtle sequence signals: a Gibbs sampling strategy for multiple alignment. Science. 1993;262:208–14.PubMedCrossRefGoogle Scholar
  11. Lopez P, Bapteste E. Molecular phylogeny: reconstructing the forest. C R Biol. 2009;332:171–82.PubMedCrossRefGoogle Scholar
  12. Puigbo P, Wolf Y, Koonin E. Search for a ‘Tree of Life’ in the thicket of the phylogenetic forest. J Biol. 2009;8:59.PubMedCentralPubMedCrossRefGoogle Scholar
  13. Sapp J. The structure of microbial evolutionary theory. Stud Hist Philos Biol Biomed Sci. 2007;38:780–795.Google Scholar
  14. Sleator RD. An overview of the processes shaping protein evolution. Sci Prog. 2010;93:1–6.PubMedCrossRefGoogle Scholar
  15. Sleator RD. Phylogenetics. Arch Microbiol. 2011;193:235–9.PubMedCrossRefGoogle Scholar
  16. Sleator RD, Shortall C, Hill C. Metagenomics. Lett Appl Microbiol. 2008;47:361–6.PubMedCrossRefGoogle Scholar
  17. Soltis DE, Soltis PS. The role of phylogenetics in comparative genetics. Plant Physiol. 2003a;132:1790–800.PubMedCentralPubMedCrossRefGoogle Scholar
  18. Soltis PS, Soltis DE. Applying the bootstrap in phylogeny reconstruction. Stat Sci. 2003b;18:256–67.CrossRefGoogle Scholar
  19. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol. 2011;28:2731–9.PubMedCentralPubMedCrossRefGoogle Scholar
  20. Wrobel B. Statistical measures of uncertainty for branches in phylogenetic trees inferred from molecular sequences by using model-based methods. J Appl Genet. 2008;49:49–67.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Biological SciencesCork Institute of TechnologyCorkIreland