Encyclopedia of Metagenomics

Living Edition
| Editors: Karen E. Nelson

Metagenomic Potential for Understanding Horizontal Gene Transfer

  • Luigi Grassi
  • Jacopo Grilli
  • Marco Cosentino Lagomarsino
Living reference work entry
DOI: https://doi.org/10.1007/978-1-4614-6418-1_704-4


Horizontal gene transfer (HGT) describes the biological phenomenon by which an organism acquires genes from organisms belonging to other species, genera, or taxa. Its name reflects the fact that the transfer of genetic information between organisms that are not necessarily related is different from the “vertical” transmission of genes from parent to offsprings. Early reports (Smith et al. 1992) interpreted HGT as a rare event, unable to significantly influence the global composition of target genomes. This first impression was rapidly subverted by the advent of genomic sequencing technologies. For example, the comparison of the genomes of Escherichia coli and Haemophilus influenzae, two bacteria belonging to the same evolutionary lineage, shows a significant difference in their gene content (Tatusov et al. 1996). This difference, which is not at all justifiable only in terms of vertical descent, gave a first indication of the massive role played by HGT in the evolution of...


Horizontal Gene Transfer Prokaryotic Genome Horizontal Gene Transfer Event Human Microbiome Metagenomic Sample 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.


  1. Andam CP, Gogarten JP. Biased gene transfer and its implications for the concept of lineage. Biol Direct. 2011;6:47.PubMedCentralPubMedCrossRefGoogle Scholar
  2. Babic A, Lindner AB, Vulic M, Stewart EJ, Radman M. Direct visualization of horizontal gene transfer. Science. 2008;319:1533–6.PubMedCrossRefGoogle Scholar
  3. Babic A, Berkmen MB, Lee CA, Grossman AD. Efficient gene transfer in bacterial cell chains. MBio. 2011;2(2):e00027.PubMedCentralPubMedCrossRefGoogle Scholar
  4. Dagan T, Martin W. Ancestral genome sizes specify the minimum rate of lateral gene transfer during prokaryote evolution. Proc Natl Acad Sci U S A. 2007;104:870–5.PubMedCentralPubMedCrossRefGoogle Scholar
  5. Grassi L, Caselle M, Lercher MJ, Lagomarsino MC. Horizontal gene transfers as metagenomic gene duplications. Mol Biosyst. 2012;8:790–5.PubMedCrossRefGoogle Scholar
  6. Grilli J, Bassetti B, Maslov S, Lagomarsino MC. Joint scaling laws in functional and evolutionary categories in prokaryotic genomes. Nucleic Acids Res. 2012;40:530–40.PubMedCentralPubMedCrossRefGoogle Scholar
  7. Hehemann JH, Correc G, Barbeyron T, Helbert W, Czjzek M, Michel G. Transfer of carbohydrate-active enzymes from marine bacteria to Japanese gut microbiota. Nature. 2010;464:908–12.PubMedCrossRefGoogle Scholar
  8. Karberg KA, Olsen GJ, Davis JJ. Similarity of genes horizontally acquired by Escherichia coli and Salmonella enterica is evidence of a supraspecies pangenome. Proc Natl Acad Sci U S A. 2011;108:20154–9.PubMedCentralPubMedCrossRefGoogle Scholar
  9. Koonin EV. Are there laws of genome evolution? PLoS Comput Biol. 2011;7:e1002173.PubMedCentralPubMedCrossRefGoogle Scholar
  10. Lercher MJ, Pal C. Integration of horizontally transferred genes into regulatory interaction networks takes many million years. Mol Biol Evol. 2008;25:559–67.PubMedCrossRefGoogle Scholar
  11. Lester CH, Frimodt-Moller N, Sorensen TL, Monnet DL, Hammerum AM. In vivo transfer of the vanA resistance gene from an Enterococcus faecium isolate of animal origin to an E. faecium isolate of human origin in the intestines of human volunteers. Antimicrob Agents Chemother. 2006;50:596–9.PubMedCentralPubMedCrossRefGoogle Scholar
  12. Nelson KE, Weinstock GM, Highlander SK, Worley KC, Creasy HH, Wortman JR, et al. A catalog of reference genomes from the human microbiome. Science. 2010;328:994–9.PubMedCrossRefGoogle Scholar
  13. Ochman H, Lawrence JG, Groisman EA. Lateral gene transfer and the nature of bacterial innovation. Nature. 2000;405:299–304.PubMedCrossRefGoogle Scholar
  14. Ochman H, Lerat E, Daubin V. Examining bacterial species under the specter of gene transfer and exchange. Proc Natl Acad Sci U S A. 2005;102 Suppl 1:6595–9.PubMedCentralPubMedCrossRefGoogle Scholar
  15. Pál C, Papp B, Lercher MJ. Adaptive evolution of bacterial metabolic networks by horizontal gene transfer. Nature Genetics. 2005;37:1372–5.Google Scholar
  16. Pang TY, Maslov S. A toolbox model of evolution of metabolic pathways on networks of arbitrary topology. PLoS Comput Biol. 2011;7:e1001137.PubMedCentralPubMedCrossRefGoogle Scholar
  17. Riesenfeld CS, Schloss PD, Handelsman J. Metagenomics: genomic analysis of microbial communities. Annu Rev Genet. 2004;38:525–52.PubMedCrossRefGoogle Scholar
  18. Rusch DB, Halpern AL, Sutton G, Heidelberg KB, Williamson S, Yooseph S, et al. The Sorcerer II Global Ocean Sampling expedition: northwest Atlantic through eastern tropical Pacific. PLoS Biol. 2007;5:e77.PubMedCentralPubMedCrossRefGoogle Scholar
  19. Smillie CS, Smith MB, Friedman J, Cordero OX, David LA, Alm EJ. Ecology drives a global network of gene exchange connecting the human microbiome. Nature. 2011;480:241–4.PubMedCrossRefGoogle Scholar
  20. Smith MW, Feng DF, Doolittle RF. Evolution by acquisition: the case for horizontal gene transfers. Trends Biochem Sci. 1992;17:489–93.PubMedCrossRefGoogle Scholar
  21. Tatusov RL, Mushegian AR, Bork P, Brown NP, Hayes WS, Borodovsky M, et al. Metabolism and evolution of Haemophilus influenzae deduced from a whole-genome comparison with Escherichia coli. Curr Biol. 1996;6:279–91.PubMedCrossRefGoogle Scholar
  22. Vulic M, Dionisio F, Taddei F, Radman M. Molecular keys to speciation: DNA polymorphism and the control of genetic exchange in enterobacteria. Proc Natl Acad Sci U S A. 1997;94:9763–7.PubMedCentralPubMedCrossRefGoogle Scholar
  23. Woese CR. Interpreting the universal phylogenetic tree. Proc Natl Acad Sci U S A. 2000;97:8392–6.PubMedCentralPubMedCrossRefGoogle Scholar
  24. Yooseph S, Nealson KH, Rusch DB, McCrow JP, Dupont CL, Kim M, et al. Genomic and functional adaptation in surface ocean planktonic prokaryotes. Nature. 2010;468:60–6.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Luigi Grassi
    • 1
  • Jacopo Grilli
    • 2
  • Marco Cosentino Lagomarsino
    • 3
    • 4
  1. 1.Physics DepartmentSapienza University of RomeRomeItaly
  2. 2.Dipartimento di Fisica “G. Galilei”, CNISM and INFNUniversità di PadovaPadovaItaly
  3. 3.Computational and Quantitative BiologyUniversity Pierre et Marie CurieParisFrance
  4. 4.CNRSParisFrance