Encyclopedia of Metagenomics

Living Edition
| Editors: Karen E. Nelson

Genome Portal, Joint Genome Institute

  • Igor V. Grigoriev
  • Susannah Tringe
  • Inna Dubchak
Living reference work entry
DOI: https://doi.org/10.1007/978-1-4614-6418-1_692-5

Synonyms

Definition

The US Department of Energy (DOE) Joint Genome Institute (JGI) is a national user facility with massive-scale DNA sequencing and analysis capabilities dedicated to advancing genomics for bioenergy and environmental applications.

The JGI Genome Portal is an integrated genomic resource, which provides for the research community around the world access to the large collection of genomic data for plants, fungi, microbes, and metagenomes and to web-based interactive tools for their analysis.

Introduction

The Department of Energy (DOE) Joint Genome Institute (JGI) was established for the Human Genome Project (Lander et al. 2001) and later was transformed into a national user facility for genome research in the DOE mission areas of bioenergy, carbon cycling, and biogeochemistry. JGI provides expertise and resources in DNA sequencing, technology development, and bioinformatics to the...

Keywords

Microbe Poplar Archaea Ascomycota Basidiomycota 
This is a preview of subscription content, log in to check access

References

  1. Berka RM, Grigoriev IV, Otillar R, et al. Comparative genomic analysis of the thermophilic biomass-degrading fungi Myceliophthora thermophila and Thielavia terrestris. Nat Biotechnol. 2011;29:922–7.PubMedCrossRefGoogle Scholar
  2. Bowler C, Allen AE, Badger JH, et al. The Phaeodactylum genome reveals the evolutionary history of diatom genomes. Nature. 2008;456:239–44.PubMedCrossRefGoogle Scholar
  3. Colbourne JK, Pfrender ME, Gilbert D, et al. The ecoresponsive genome of Daphnia pulex. Science. 2011;331:555–61.PubMedCentralPubMedCrossRefGoogle Scholar
  4. Eastwood DC, Floudas D, Binder M, et al. The plant cell wall-decomposing machinery underlies the functional diversity of forest fungi. Science. 2011;333:762–5.PubMedCrossRefGoogle Scholar
  5. Frazer KA, Pachter L, Poliakov A, et al. VISTA: computational tools for comparative genomics. Nucleic Acids Res. 2004;32:W273–9.PubMedCentralPubMedCrossRefGoogle Scholar
  6. Fritz-Laylin LK, Prochnik SE, Ginger ML, et al. The genome of Naegleria gruberi illuminates early eukaryotic versatility. Cell. 2010;140:631–42.PubMedCrossRefGoogle Scholar
  7. Goodstein DM, Shu S, Howson R, et al. Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res. 2012;40:D1178–86.PubMedCentralPubMedCrossRefGoogle Scholar
  8. Grigoriev IV, Cullen D, Goodwin SB, et al. Fueling the future with fungal genomics. Mycology. 2011;2:192–209.Google Scholar
  9. Grigoriev IV, Nordberg H, Shabalov I, et al. The genome portal of the Department of Energy Joint Genome Institute. Nucleic Acids Res. 2012;40:D26–32.PubMedCentralPubMedCrossRefGoogle Scholar
  10. Hess M, Sczyrba A, Egan R, et al. Metagenomic discovery of biomass-degrading genes and genomes from cow rumen. Science. 2011;331:463–7.PubMedCrossRefGoogle Scholar
  11. Huson DH, Mitra S. Introduction to the analysis of environmental sequences: metagenomics with MEGAN. Methods Mol Biol. 2012;856:415–29.PubMedCrossRefGoogle Scholar
  12. King N, Westbrook MJ, Young SL, et al. The genome of the choanoflagellate Monosiga brevicollis and the origin of metazoans. Nature. 2008;451:783–8.PubMedCentralPubMedCrossRefGoogle Scholar
  13. Lander ES, Linton LM, Birren B, et al. Initial sequencing and analysis of the human genome. Nature. 2001;409:860–921.PubMedCrossRefGoogle Scholar
  14. Markowitz VM, Chen IM, Chu K, et al. IMG/M: the integrated metagenome data management and comparative analysis system. Nucleic Acids Res. 2012a;40:D123–9.PubMedCentralPubMedCrossRefGoogle Scholar
  15. Markowitz VM, Chen IM, Palaniappan K, et al. IMG: the Integrated Microbial Genomes database and comparative analysis system. Nucleic Acids Res. 2012b;40:D115–22.PubMedCentralPubMedCrossRefGoogle Scholar
  16. Martin F, Aerts A, Ahren D, et al. The genome of Laccaria bicolor provides insights into mycorrhizal symbiosis. Nature. 2008;452:88–92.PubMedCrossRefGoogle Scholar
  17. Martin F, Cullen D, Hibbett D, et al. Sequencing the fungal tree of life. New Phytol. 2011;190:818–21.PubMedCrossRefGoogle Scholar
  18. Matsen FA, Hoffman NG, Gallagher A, et al. A format for phylogenetic placements. PLoS One. 2012;7:e31009.PubMedCentralPubMedCrossRefGoogle Scholar
  19. Meyer F, Paarmann D, D’Souza M, et al. The metagenomics RAST server – a public resource for the automatic phylogenetic and functional analysis of metagenomes. BMC Bioinforma. 2008;9:386.CrossRefGoogle Scholar
  20. Pagani I, Liolios K, Jansson J, et al. The Genomes OnLine Database (GOLD) v. 4: status of genomic and metagenomic projects and their associated metadata. Nucleic Acids Res. 2012;40:D571–9.PubMedCentralPubMedCrossRefGoogle Scholar
  21. Tringe SG, von Mering C, Kobayashi A, et al. Comparative metagenomics of microbial communities. Science. 2005;308:554–7.PubMedCrossRefGoogle Scholar
  22. Tuskan GA, Difazio S, Jansson S, et al. The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science. 2006;313:1596–604.PubMedCrossRefGoogle Scholar
  23. Tyler BM, Tripathy S, Zhang X, et al. Phytophthora genome sequences uncover evolutionary origins and mechanisms of pathogenesis. Science. 2006;313:1261–6.PubMedCrossRefGoogle Scholar
  24. Walsh DA, Zaikova E, Howes CG, et al. Metagenome of a versatile chemolithoautotroph from expanding oceanic dead zones. Science. 2009;326:578–82.PubMedCrossRefGoogle Scholar
  25. Wu D, Hugenholtz P, Mavromatis K, et al. A phylogeny-driven genomic encyclopaedia of bacteria and archaea. Nature. 2009;462:1056–60.PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Igor V. Grigoriev
    • 1
  • Susannah Tringe
    • 1
  • Inna Dubchak
    • 1
  1. 1.US Department of Energy Joint Genome InstituteWalnut CreekUSA