Encyclopedia of Metagenomics

Living Edition
| Editors: Karen E. Nelson

MRSA/MSSA, Antibiotic Resistance

  • Kristina G. HultenEmail author
  • J. Chase McNeil
Living reference work entry
DOI: https://doi.org/10.1007/978-1-4614-6418-1_56-2


Staphylococcus aureus causes infections in humans ranging from mild to severe disease. The increasing use of antibiotics has resulted in the acquisition and spread of resistance markers among S. aureus strains. Antibiotic resistance can be conferred by point mutations in specific genes, or resistance genes can be carried on conjugative plasmids or bacteriophages and transferred between organisms or even between species.


The objective of this review is to give a concise description of Staphylococcus aureus, focusing on the genetic mechanisms of antibiotic resistance relevant to this bacterium. S. aureus is a ubiquitous organism that causes infections in both adults and children. More than 95 % of infections involve the skin and soft tissues; however, invasive infections such as osteomyelitis, septic arthritis, pneumonia, myositis, pyomyositis, and severe sepsis have been associated with significant morbidity and mortality (Kaplan et al. 2009). First described in...


Methicillin Resistance Chlorhexidine Gluconate Inducible Clindamycin Resistance Bacterial Cell Wall Peptidoglycan MLSB Phenotype 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.


  1. Besier S, Ludwig A, et al. Molecular analysis of the thymidine-auxotrophic small colony variant phenotype of Staphylococcus aureus. Int J Med Microbiol. 2007;297(4):217–25.PubMedCrossRefGoogle Scholar
  2. Chang S, Sievert DM, et al. Infection with vancomycin-resistant Staphylococcus aureus containing the vanA resistance gene. N Engl J Med. 2003;348(14):1342–7.PubMedCrossRefGoogle Scholar
  3. Cui L, Isii T, et al. An RpoB mutation confers dual heteroresistance to daptomycin and vancomycin in Staphylococcus aureus. Antimicrob Agents Chemother. 2010;54(12):5222–33.PubMedCentralPubMedCrossRefGoogle Scholar
  4. Dale GE, Broger C, et al. A single amino acid substitution in Staphylococcus aureus dihydrofolate reductase determines trimethoprim resistance. J Mol Biol. 1997;266(1):23–30.PubMedCrossRefGoogle Scholar
  5. de Lencastre H, Tomasz A. Reassessment of the number of auxiliary genes essential for expression of high-level methicillin resistance in Staphylococcus aureus. Antimicrob Agents Chemother. 1994;38(11):2590–8.PubMedCentralPubMedCrossRefGoogle Scholar
  6. Enright MC, Robinson DA, et al. The evolutionary history of methicillin-resistant Staphylococcus aureus (MRSA). Proc Natl Acad Sci USA. 2002;99(11):7687–92.PubMedCentralPubMedCrossRefGoogle Scholar
  7. Fowler Jr VG, Boucher HW, et al. Daptomycin versus standard therapy for bacteremia and endocarditis caused by Staphylococcus aureus. N Engl J Med. 2006;355(7):653–65.PubMedCrossRefGoogle Scholar
  8. Ikeda-Dantsuji Y, Hanaki H, et al. Emergence of linezolid-resistant mutants in a susceptible-cell population of methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother. 2011;55(5):2466–8.PubMedCentralPubMedCrossRefGoogle Scholar
  9. Kaplan SL, Hulten KG, et al. Staphylococcus aureus infections. In: Feigin RD, Cherry JD, Demmler-Harrison GJ, Kaplan SL, editors. Textbook of pediatric infectious diseases. Philadelphia: Saunders Elsevier; 2009. p. 1197–213.Google Scholar
  10. Ma XX, Ito T, et al. Novel type of staphylococcal cassette chromosome mec identified in community-acquired methicillin-resistant Staphylococcus aureus strains. Antimicrob Agents Chemother. 2002;46(4):1147–52.PubMedCentralPubMedCrossRefGoogle Scholar
  11. McDonnell G, Russell AD. Antiseptics and disinfectants: activity, action, and resistance. Clin Microbiol Rev. 1999;12(1):147–79.PubMedCentralPubMedGoogle Scholar
  12. McDougal LK, Steward CD, et al. Pulsed-field gel electrophoresis typing of oxacillin-resistant Staphylococcus aureus isolates from the United States: establishing a national database. J Clin Microbiol. 2003;41(11):5113–20.PubMedCentralPubMedCrossRefGoogle Scholar
  13. McNeil JC, Hulten KG, et al. Staphylococcus aureus infections in HIV-positive children and adolescents. Pediatr Infect Dis J. 2012;31(3):284–6.PubMedCrossRefGoogle Scholar
  14. McNeil JC, Hulten KG, et al. Staphylococcus aureus infections in pediatric oncology patients: high rates of antimicrobial resistance, antiseptic tolerance and complications. Pediatr Infect Dis. 2013;32:124–8.CrossRefGoogle Scholar
  15. Morales G, Picazo JJ, et al. Resistance to linezolid is mediated by the cfr gene in the first report of an outbreak of linezolid-resistant Staphylococcus aureus. Clin Infect Dis. 2010;50(6):821–5.PubMedCrossRefGoogle Scholar
  16. Nakaminami H, Noguchi N, et al. Fluoroquinolone efflux by the plasmid-mediated multidrug efflux pump QacB variant QacBIII in Staphylococcus aureus. Antimicrob Agents Chemother. 2010;54(10):4107–11.PubMedCentralPubMedCrossRefGoogle Scholar
  17. Ogston A. Micrococcus poisoning. J Anat Physiol. 1882;17(Pt 1):24–58.PubMedCentralPubMedGoogle Scholar
  18. Pereira PM, Filipe SR, et al. Fluorescence ratio imaging microscopy shows decreased access of vancomycin to cell wall synthetic sites in vancomycin-resistant Staphylococcus aureus. Antimicrob Agents Chemother. 2007;51(10):3627–33.PubMedCentralPubMedCrossRefGoogle Scholar
  19. Pinho MG, de Lencastre H, et al. An acquired and a native penicillin-binding protein cooperate in building the cell wall of drug-resistant staphylococci. Proc Natl Acad Sci USA. 2001;98(19):10886–91.PubMedCentralPubMedCrossRefGoogle Scholar
  20. Popovich KJ, Hota B, et al. Effectiveness of routine patient cleansing with chlorhexidine gluconate for infection prevention in the medical intensive care unit. Infect Control Hosp Epidemiol. 2009;30(10):959–63.PubMedCrossRefGoogle Scholar
  21. Roberts MC, Sutcliffe J, et al. Nomenclature for macrolide and macrolide-lincosamide-streptogramin B resistance determinants. Antimicrob Agents Chemother. 1999;43(12):2823–30.PubMedCentralPubMedGoogle Scholar
  22. Ross JI, Eady EA, et al. Inducible erythromycin resistance in staphylococci is encoded by a member of the ATP-binding transport super-gene family. Mol Microbiol. 1990;4(7):1207–14.PubMedCrossRefGoogle Scholar
  23. Shurland S, Zhan M, et al. Comparison of mortality risk associated with bacteremia due to methicillin-resistant and methicillin-susceptible Staphylococcus aureus. Infect Control Hosp Epidemiol. 2007;28(3):273–9.PubMedCrossRefGoogle Scholar
  24. Siberry GK, Tekle T, et al. Failure of clindamycin treatment of methicillin-resistant Staphylococcus aureus expressing inducible clindamycin resistance in vitro. Clin Infect Dis. 2003;37(9):1257–60.PubMedCrossRefGoogle Scholar
  25. Steward CD, Raney PM, et al. Testing for induction of clindamycin resistance in erythromycin-resistant isolates of Staphylococcus aureus. J Clin Microbiol. 2005;43(4):1716–21.PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of PediatricsBaylor College of MedicineHoustonUSA