Encyclopedia of Metagenomics

Living Edition
| Editors: Karen E. Nelson

Rivers, Metagenomics of

  • Rohit Ghai
Living reference work entry
DOI: https://doi.org/10.1007/978-1-4614-6418-1_41-2



Freshwater habitats, especially rivers, are vital components of terrestrial ecosystems, supporting life much beyond their natural spread. Outside the ocean, nearly all life depends upon the availability of freshwater. River systems have been in the past the cradles of civilization, and with increasing population pressures on this limited resource, they cannot remain unaffected by the demands of human growth that force change and steadily shift the ecology of these natural resources away from their pristine states. It may come as a surprise to many, but most of the important microbiota of freshwater ecosystems that have resisted cultivation efforts are only now being fully discovered due to the advances in sequencing technologies.


The technique of pure culture, developed in the late nineteenth century, through the pioneering work done by Louis Pasteur, Robert Koch, and Ferdinand Cohn, has been...


Metagenomic Data Metagenomic Dataset Ammonia Monooxygenase Microbial World Amazon River Basin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.


  1. Antoine R, Jacob-Dubuisson F, Drobecq H, Willery E, Lesjean S, Locht C. Overrepresentation of a gene family encoding extracytoplasmic solute receptors in Bordetella. J Bacteriol. 2003;185:1470–4.PubMedCentralPubMedCrossRefGoogle Scholar
  2. Callieri C, Corno G, Caravati E, Rasconi S, Contesini M, Bertoni R. Bacteria, archaea, and crenarchaeota in the epilimnion and hypolimnion of a deep holo-oligomictic lake. Appl Environ Microbiol. 2009;75:7298–300.PubMedCentralPubMedCrossRefGoogle Scholar
  3. Clingenpeel S, Macur RE, Kan J, Inskeep WP, Lovalvo D, Varley J, Mathur E, Nealson K, Gorby Y, Jiang H, et al. Yellowstone Lake: high-energy geochemistry and rich bacterial diversity. Environ Microbiol. 2011;13:2172–85.PubMedCrossRefGoogle Scholar
  4. Debroas D, Humbert JF, Enault F, Bronner G, Faubladier M, Cornillot E. Metagenomic approach studying the taxonomic and functional diversity of the bacterial community in a mesotrophic lake (Lac du Bourget–France). Environ Microbiol. 2009;11:2412–24.PubMedCrossRefGoogle Scholar
  5. Finer M, Jenkins CM. Proliferation of hydroelectric dams in the Andean Amazon and implications for Andes-Amazon connectivity. PLoS One. 2012;7:e35126.PubMedCentralPubMedCrossRefGoogle Scholar
  6. Ghai R, Pasic L, Fernandez AB, Martin-Cuadrado AB, Mizuno CM, McMahon KD, Papke RT, Stepanauskas R, Rodriguez-Brito B, Rohwer F, et al. New abundant microbial groups in aquatic hypersaline environments. Sci Rep. 2011a;1:135.PubMedCentralPubMedCrossRefGoogle Scholar
  7. Ghai R, Rodriguez-Valera F, McMahon KD, Toyama D, Rinke R, Souza de Oliveira TC, Wagner Garcia J, Pellon de Miranda F, Henrique-Silva F. Metagenomics of the water column in the pristine upper course of the Amazon river. PLoS One. 2011b;6:e23785.PubMedCentralPubMedCrossRefGoogle Scholar
  8. Ghai R, McMahon KD, Rodriguez-Valera F. Breaking a paradigm: cosmopolitan and abundant freshwater actinobacteria are low GC. Environ Microbiol Rep. 2012;4:29–35.PubMedCrossRefGoogle Scholar
  9. Hahn MW, Lunsdorf H, Wu Q, Schauer M, Hofle MG, Boenigk J, Stadler P. Isolation of novel ultramicrobacteria classified as actinobacteria from five freshwater habitats in Europe and Asia. Appl Environ Microbiol. 2003;69:1442–51.PubMedCentralPubMedCrossRefGoogle Scholar
  10. Hatamoto O, Watarai T, Kikuchi M, Mizusawa K, Sekine H. Cloning and sequencing of the gene encoding tannase and a structural study of the tannase subunit from Aspergillus oryzae. Gene. 1996;175:215–21.PubMedCrossRefGoogle Scholar
  11. Jezberova J, Jezbera J, Brandt U, Lindstrom ES, Langenheder S, Hahn MW. Ubiquity of Polynucleobacter necessarius ssp. asymbioticus in lentic freshwater habitats of a heterogeneous 2,000 km area. Environ Microbiol. 2010;12:658–69.PubMedCentralPubMedCrossRefGoogle Scholar
  12. Newton RJ, Jones SE, Eiler A, McMahon KD, Bertilsson S. A guide to the natural history of freshwater lake bacteria. Microbiol Mol Biol Rev. 2011;75:14–49.PubMedCentralPubMedCrossRefGoogle Scholar
  13. Nilsson C, Reidy CA, Dynesius M, Revenga C. Fragmentation and flow regulation of the world’s large river systems. Science. 2005;308:405–8.PubMedCrossRefGoogle Scholar
  14. Rusch DB, Halpern AL, Sutton G, Heidelberg KB, Williamson S, Yooseph S, Wu D, Eisen JA, Hoffman JM, Remington K, et al. The Sorcerer II Global Ocean Sampling expedition: northwest Atlantic through eastern tropical Pacific. PLoS Biol. 2007;5:e77.PubMedCentralPubMedCrossRefGoogle Scholar
  15. Sharma AK, Zhaxybayeva O, Papke RT, Doolittle WF. Actinorhodopsins: proteorhodopsin-like gene sequences found predominantly in non-marine environments. Environ Microbiol. 2008;10:1039–56.PubMedCrossRefGoogle Scholar
  16. Sioli H. Das Wasser im Amazonasgebiet. Forsch Fortschr. 1950;26:274–80.Google Scholar
  17. Sioli H. Tropical rivers as expressions of their terrestrial environments. In: Golley FB, Medina E, editors. Tropical ecological systems, trends in terrestrial and aquatic research. New York: Springer; 1975. p. 275–88.Google Scholar
  18. Walker CB, de la Torre JR, Klotz MG, Urakawa H, Pinel N, Arp DJ, Brochier-Armanet C, Chain PSG, Chan PP, Gollabgir A, et al. Nitrosopumilus maritimus genome reveals unique mechanisms for nitrification and autotrophy in globally distributed marine crenarchaea. Proc Natl Acad Sci U S A. 2010;107:8818–23.PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Departamento de Producción Vegetal y MicrobiologíaEvolutionary Genomics Group, Universidad Miguel HernándezSan Juan de AlicanteSpain