Encyclopedia of Metagenomics

Living Edition
| Editors: Karen E. Nelson

Ocean Gyres, Metagenomics of

  • Irina N. ShilovaEmail author
  • Anne W. Thompson
  • Ian Hewson
  • Jonathan P. Zehr
Living reference work entry
DOI: https://doi.org/10.1007/978-1-4614-6418-1_39-2


Oligotrophic open ocean considered in this chapter refers to euphotic zone approximately 0–200 m deep, away from coasts, and characterized by low concentrations of biologically available inorganic nutrients. These waters are mostly contained in the five oceanic gyres (North and South Subtropical Pacific, North and South Subtropical Atlantic, Indian Gyre) and also Mediterranean Sea.


The open ocean is one of the largest habitats on Earth. Microorganisms in the surface waters of the oceans control biogeochemical cycling of elements and the exchange of gases with the atmosphere, including greenhouse gases. Most of the microorganisms in the open ocean have not been cultivated, preventing study of their ecology by traditional methods. Metagenomics has provided a new tool for examining microbial communities in nature. It is now possible to study uncultivated microbial communities in the context of the chemical, physical, and biological variables that define the open...


Open Ocean Global Ocean Sampling Eukaryotic Protein Kinase Station Aloha Prochlorococcus Strain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.


  1. Angly FE, Felts B, Breitbart M, Salamon P, Edwards RA, Carlson C, et al. The marine viromes of four oceanic regions. PLoS Biol. 2006;4:2121–31.CrossRefGoogle Scholar
  2. Armbrust EV. The genome of the diatom Thalassiosira pseudonana: ecology, evolution, and metabolism. Science. 2004;306:79–86.PubMedCrossRefGoogle Scholar
  3. Azam F, Malfatti F. Microbial structuring of marine ecosystems. Nat Rev Microbiol. 2007;5:782–91.PubMedCrossRefGoogle Scholar
  4. Béjà O, Suzuki MT, Koonin EV, Aravind L, Hadd A, Nguyen LP, et al. Construction and analysis of bacterial artificial chromosome libraries from a marine microbial assemblage. Environ Microbiol. 2000a;2:516–29.PubMedCrossRefGoogle Scholar
  5. Béjà O, Aravind L, Koonin EV, Suzuki MT, Hadd A, Nguyen LP, et al. Bacterial rhodopsin: evidence for a new type of phototrophy in the sea. Science. 2000b;289:1902–6.PubMedCrossRefGoogle Scholar
  6. Beja O, Fridman S, Glaser F. Viral clones from the GOS expedition with an unusual photosystem-I gene cassette organization. ISME J. 2012;6:1617–20.PubMedCentralPubMedCrossRefGoogle Scholar
  7. Biers EJ, Sun S, Howard EC. Prokaryotic genomes and diversity in surface ocean waters: interrogating the global ocean sampling metagenome. Appl Environ Microbiol. 2009;75:2221–9.PubMedCentralPubMedCrossRefGoogle Scholar
  8. Bowler C, Allen AE, Badger JH, Grimwood J, Jabbari K, et al. The Phaeodactylum genome reveals the evolutionary history of diatom genomes. Nature. 2008;456:239–44.PubMedCrossRefGoogle Scholar
  9. Brindefalk B, Ettema TJG, Viklund J, Thollesson M, Andersson SGE. A phylometagenomic exploration of oceanic alphaproteobacteria reveals mitochondrial relatives unrelated to the SAR11 clade. PLoS One. 2011;6:e24457.PubMedCentralPubMedCrossRefGoogle Scholar
  10. Brochier-Armanet C, Boussau B, Gribaldo S, Forterre P. Mesophilic crenarchaeota: proposal for a third archaeal phylum, the Thaumarchaeota. Nat Rev Micro. 2008;6:245–52.CrossRefGoogle Scholar
  11. Coleman ML, Chisholm SW. Ecosystem-specific selection pressures revealed through comparative population genomics. Proc Natl Acad Sci U S A. 2010;107:18634–9.PubMedCentralPubMedCrossRefGoogle Scholar
  12. Coleman ML, Sullivan MB, Martiny AC, Steglich C, Barry K, DeLong EF, Chisholm SW. Genomic islands and the ecology and evolution of Prochlorococcus. Science. 2006;311:1768–70.PubMedCrossRefGoogle Scholar
  13. Comeau AM, Arbiol C, Krisch HM. Gene network visualization and quantitative synteny analysis of more than 300 marine T4-like phage scaffolds from the GOS metagenome. Mol Biol Evol. 2010;27:1935–44.PubMedCentralPubMedCrossRefGoogle Scholar
  14. Culley AI, Lang AS, Suttle CA. Metagenomic analysis of coastal RNA virus communities. Science. 2006;312:1795–8.PubMedCrossRefGoogle Scholar
  15. Cuvelier ML, Allen AE, Monier A, McCrow JP, Messie M, Tringe SG, et al. Targeted metagenomics and ecology of globally important uncultured eukaryotic phytoplankton. Proc Natl Acad Sci U S A. 2010;107:14679–84.PubMedCentralPubMedCrossRefGoogle Scholar
  16. DeLong EF. Microbial community genomics in the ocean. Nat Rev Microbiol. 2005;3:459–69.PubMedCrossRefGoogle Scholar
  17. DeLong EF, Preston CM, Mincer T, Rich V, Hallam SJ, Frigaard NU, et al. Community genomics among stratified microbial assemblages in the ocean’s interior. Science. 2006;311:496–503.PubMedCrossRefGoogle Scholar
  18. Derelle E, Ferraz C, Rombauts S, Rouzé P, Worden A, et al. Genome analysis of the smallest free-living eukaryote Ostreococcus tauri unveils many unique features. Proc Natl Acad Sci. 2006;103:11647.PubMedCentralPubMedCrossRefGoogle Scholar
  19. Dupont CL, Rusch DB, Yooseph S, Lombardo M-J, Alexander Richter R, Valas R, et al. Genomic insights to SAR86, an abundant and uncultivated marine bacterial lineage. ISME J. 2012;6:1186–99.PubMedCentralPubMedCrossRefGoogle Scholar
  20. Feike J, Juergens K, Hollibaugh JT, Krueger S, Jost G, Labrenz M. Measuring unbiased metatranscriptomics in suboxic waters of the central Baltic Sea using a new in situ fixation system. ISME J. 2012;6:461–70.PubMedCentralPubMedCrossRefGoogle Scholar
  21. Feingersch R, Suzuki MT, Shmoish M, Sharon I, Sabehi G, Partensky F, Beja O. Microbial community genomics in eastern Mediterranean Sea surface waters. ISME J. 2010;4:78–87.PubMedCrossRefGoogle Scholar
  22. Fischer MG, Allen MJ, Wilson WH, Suttle CA. Giant virus with a remarkable complement of genes infects marine zooplankton. Proc Natl Acad Sci U S A. 2010;107:19508–13.PubMedCentralPubMedCrossRefGoogle Scholar
  23. Frias-Lopez J, Shi Y, Tyson GW, Coleman ML, Schuster SC, Chisholm SW, DeLong EF. Microbial community gene expression in ocean surface waters. Proc Natl Acad Sci U S A. 2008;105:3805–10.PubMedCentralPubMedCrossRefGoogle Scholar
  24. Fuhrman JA, McCallum K, Davis AA. Phylogenetic diversity of subsurface marine microbial communities from the Atlantic and Pacific Oceans. Appl Environ Microbiol. 1993;59:1294–302.PubMedCentralPubMedGoogle Scholar
  25. Gianoulis TA, Raes J, Patel PV, Bjornson R, Korbel JO, Letunic I, et al. Quantifying environmental adaptation of metabolic pathways in metagenomics. Proc Natl Acad Sci U S A. 2009;106:1374–9.PubMedCentralPubMedCrossRefGoogle Scholar
  26. Gifford SM, Sharma S, Rinta-kanto JM, Moran MA. Quantitative analysis of a deeply sequenced marine microbial metatranscriptome. ISME J. 2011;5:461–72.PubMedCentralPubMedCrossRefGoogle Scholar
  27. Gilbert JA, Dupont CL. Microbial metagenomics: beyond the genome. Annu Rev Mar Sci.2011;3:347–71.Google Scholar
  28. Giovannoni SJ, Stingl U. Molecular diversity and ecology of microbial plankton. Nature. 2005;437:343–8.PubMedCrossRefGoogle Scholar
  29. Giovannoni SJ, Britschgi TB, Moyer CL, Field KG. Genetic diversity in Sargasso Sea bacterioplankton. Nature. 1990;345:60–3.PubMedCrossRefGoogle Scholar
  30. Hackett JD, Anderson DM, Erdner DL, Bhattacharya D. Dinoflagellates: a remarkable evolutionary experiment. Am J Bot. 2004;91:1523–34.PubMedCrossRefGoogle Scholar
  31. Hewson I, Paerl RW, Tripp HJ, Zehr JP, Karl DM. Metagenomic potential of microbial assemblages in the surface waters of the central Pacific Ocean tracks variability in oceanic habitat. Limnol Oceanogr. 2009a;54:1981–94.CrossRefGoogle Scholar
  32. Hewson I, Poretsky RS, Dyhrman ST, Zielinkski B, White AE, Tripp HJ, et al. Microbial community gene expression within colonies of the diazotroph, Trichodesmium, from the Southwest Pacific Ocean. ISME J. 2009b;3:1286–300.PubMedCrossRefGoogle Scholar
  33. Hewson I, Poretsky RS, Beinart RA, White AE, Shi T, Bench SR, et al. In situ transcriptomic analysis of the globally important keystone N2-fixing taxon Crocosphaera watsonii. ISME J. 2009c;3:618–31.PubMedCrossRefGoogle Scholar
  34. Hewson I, Poretsky RS, Tripp HJ, Montoya JP, Zehr JP. Spatial patterns and light-driven variation of microbial population gene expression in surface waters of the oligotrophic open ocean. Environ Microbiol. 2010;12:1940–56.PubMedCrossRefGoogle Scholar
  35. Heywood JL, Sieracki ME, Bellows W, Poulton NJ, Stepanauskas R. Capturing diversity of marine heterotrophic protists: one cell at a time. ISME J. 2011;5:674–84.PubMedCentralPubMedCrossRefGoogle Scholar
  36. Howard EC, Sun S, Biers EJ, Moran MA. Abundant and diverse bacteria involved in DMSP degradation in marine surface waters. Environ Microbiol. 2008;10:2397–410.PubMedCrossRefGoogle Scholar
  37. Iverson V, Morris RM, Frazar CD, Berthiaume CT, Morales RL, Armbrust EV. Untangling genomes from metagenomes: revealing an uncultured class of marine Euryarchaeota. Science. 2012;335:587–90.PubMedCrossRefGoogle Scholar
  38. Kalyuzhnaya MG, Nercessian O, Lapidus A, Chistoserdova L. Fishing for biodiversity: novel methanopterin-linked C-1 transfer genes deduced from the Sargasso Sea metagenome. Environ Microbiol. 2005;7:1909–16.PubMedCrossRefGoogle Scholar
  39. Kannan N, Taylor SS, Zhai Y, Venter JC, Manning G. Structural and functional diversity of the microbial kinome. PLoS Biol. 2007;5:e17.PubMedCentralPubMedCrossRefGoogle Scholar
  40. Karl D, Lukas R. The Hawaii ocean time-series (HOT) program: background, rationale, and field implementation. Deep-Sea Res II. 1996;43:129–56.CrossRefGoogle Scholar
  41. Koonin EV. Metagenomic sorcery and the expanding protein universe. Nat Biotechnol. 2007;25:540–2.PubMedCrossRefGoogle Scholar
  42. Koonin EV, Wolf YI. Genomics of bacteria and archaea: the emerging dynamic view of the prokaryotic world. Nucleic Acids Res. 2008;36(21):6688–719.PubMedCentralPubMedCrossRefGoogle Scholar
  43. Lang AS, Rise ML, Culley AL, Steward GF. RNA viruses in the sea. FEMS Microbiol Rev. 2009;33:295–323.PubMedCrossRefGoogle Scholar
  44. Leitão E, Moradas-Ferreira P, de Marco P. Evidence of methanesulfonate utilizers in the Sargasso Sea metagenome. J Basic Microbiol. 2009;49:S24–30.PubMedCrossRefGoogle Scholar
  45. Lopez-Garcia P, Rodriguez-Valera F, Pedros-Alio C, Moreira D. Unexpected diversity of small eukaryotes in deep-sea Antarctic plankton. Nature. 2001;409:603–7.PubMedCrossRefGoogle Scholar
  46. Marchetti A, Schruth DM, Durkin CA, Parker MS, Kodner RB, Berthiaume CT, et al. Comparative metatranscriptomics identifies molecular bases for the physiological responses of phytoplankton to varying iron availability. Proc Natl Acad Sci U S A. 2012;109:E317–25. doi:10.1073/pnas.1118408109.PubMedCentralPubMedCrossRefGoogle Scholar
  47. Martinez A, Tyson GW, DeLong EF. Widespread known and novel phosphonate utilization pathways in marine bacteria revealed by functional screening and metagenomic analyses. Environ Microbiol. 2010;12:222–38.PubMedCrossRefGoogle Scholar
  48. Martiny AC, Huang Y, Li W. Occurrence of phosphate acquisition genes in Prochlorococcus cells from different ocean regions. Environ Microbiol. 2009;11:1340–7.PubMedCrossRefGoogle Scholar
  49. McCarren J, Becker JW, Repeta DJ, Shi YM, Young CR, Malmstrom RR, et al. Microbial community transcriptomes reveal microbes and metabolic pathways associated with dissolved organic matter turnover in the sea. Proc Natl Acad Sci U S A. 2010;107:16420–7.PubMedCentralPubMedCrossRefGoogle Scholar
  50. Moon-van der Staay SY, De Wachter R, Vaulot D. Oceanic 18S rDNA sequences from picoplankton reveal unsuspected eukaryotic diversity. Nature. 2001;409:607–10.PubMedCrossRefGoogle Scholar
  51. Mullins TD, Britschgi TB, Krest RL, Giovannoni SJ. Genetic comparisons reveal the same unknown bacterial lineages in Atlantic and Pacific bacterioplankton communities. Limnol Oceanogr. 1995;40:148–58.CrossRefGoogle Scholar
  52. Not F, del Campo J, Balagué V, de Vargas C, Massana R. New insights into the diversity of marine Picoeukaryotes. PLoS One. 2009;4:e7143.PubMedCentralPubMedCrossRefGoogle Scholar
  53. Palenik B, Grimwood J, Aerts A, Rouze P, Salamov A, et al. The tiny eukaryote Ostreococcus provides genomic insights into the paradox of plankton speciation. Proc Natl Acad Sci U S A. 2007;104:7705–10.PubMedCentralPubMedCrossRefGoogle Scholar
  54. Pearson A, Leavitt WD, Sáenz JP, Summons RE, Tam MCM, Close HG. Diversity of hopanoids and squalene-hopene cyclases across a tropical land-sea gradient. Environ Microbiol. 2009;11:1208–23.PubMedCrossRefGoogle Scholar
  55. Piganeau G, Moreau H. Screening the Sargasso Sea metagenome for data to investigate genome evolution in Ostreococcus (Prasinophyceae, Chlorophyta). Gene. 2007;406:184–90.PubMedCrossRefGoogle Scholar
  56. Piganeau G, Desdevises Y, Derelle E, Moreau H. Picoeukaryotic sequences in the Sargasso Sea metagenome. Genome Biol. 2008;9:R5.PubMedCentralPubMedCrossRefGoogle Scholar
  57. Poretsky RS, Hewson I, Sun S, Allen AE, Zehr JP, Moran MA. Comparative day/night metatranscriptomic analysis of microbial communities in the North Pacific subtropical gyre. Environ Microbiol. 2009;11:1358–75.PubMedCrossRefGoogle Scholar
  58. Preston CM, Marin III R, Jensen SD, Feldman J, Birch JM, Massion EI, et al. Near real-time, autonomous detection of marine bacterioplankton on a coastal mooring in Monterey Bay, California, using rRNA-targeted DNA probes. Environ Microbiol. 2009;11:1168–80.PubMedCrossRefGoogle Scholar
  59. Raoult D, Audic S, Robert C, Abergel C, Renesto P, Ogata H, et al. The 1.2-megabase genome sequence of mimivirus. Science. 2004;306:1344.PubMedCrossRefGoogle Scholar
  60. Rappé MS, Connon SA, Vergin KL, Giovannoni SJ. Cultivation of the ubiquitous SAR11 marine bacterioplankton clade. Nature. 2002;418:630–3.PubMedCrossRefGoogle Scholar
  61. Reisch CR, Moran MA, Whitman WB. Dimethylsulfoniopropionate-dependent demethylase (DmdA) from Pelagibacter ubique and Silicibacter pomeroyi. J Bacteriol. 2008;190:8018–24.PubMedCentralPubMedCrossRefGoogle Scholar
  62. Robidart JC, Preston CM, Paerl RW, Turk KA, Mosier AC, Francis CA, et al. Seasonal Synechococcus and Thaumarchaeal population dynamics examined with high resolution with remote in situ instrumentation. ISME J. 2012;6:513–23.PubMedCentralPubMedCrossRefGoogle Scholar
  63. Rocap G, Larimer FW, Lamerdin J, Malfatti S, Chain P, Ahlgren NA, et al. Genome divergence in two Prochlorococcus ecotypes reflects oceanic niche differentiation. Nature. 2003;424:1042–7.PubMedCrossRefGoogle Scholar
  64. Rosario K, Duffy S, Breitbart M. Diverse circovirus-like genome architectures revealed by environmental metagenomics. J Gen Virol. 2009;90:2418–24.PubMedCrossRefGoogle Scholar
  65. Rusch DB, Halpern AL, Sutton G, Heidelberg KB, Williamson S, Yooseph S, et al. The Sorcerer II Global Ocean Sampling expedition: northwest Atlantic through eastern tropical Pacific. PLoS Biol. 2007;5:e77.PubMedCentralPubMedCrossRefGoogle Scholar
  66. Schmidt TM, DeLong EF, Pace NR. Analysis of a marine picoplankton community by 16S rRNA gene cloning and sequencing. J Bacteriol. 1991;173:4371–8.PubMedCentralPubMedGoogle Scholar
  67. Seshadri R, Kravitz S, Smarr L, Gilna P, Frazier M. CAMERA: a community resource for metagenomics. PLoS Biol. 2007;5:e75.PubMedCentralPubMedCrossRefGoogle Scholar
  68. Sharon I, Alperovitch A, Rohwer F, Haynes M, Glaser F, Atamna-Ismaeel N, et al. Photosystem I gene cassettes are present in marine virus genomes. Nature. 2009;461:258–62.PubMedCrossRefGoogle Scholar
  69. Sharon I, Battchikova N, Aro E-M, Giglione C, Meinnel T, Glaser F, et al. Comparative metagenomics of microbial traits within oceanic viral communities. ISME J. 2011;5:1178–90.PubMedCentralPubMedCrossRefGoogle Scholar
  70. Shi YM, Tyson GW, DeLong EF. Metatranscriptomics reveals unique microbial small RNAs in the ocean’s water column. Nature. 2009;459:266–9.PubMedCrossRefGoogle Scholar
  71. Shi Y, Tyson GW, Eppley JM, DeLong EF. Integrated metatranscriptomic and metagenomic analyses of stratified microbial assemblages in the open ocean. ISME J. 2011;5:999–1013.PubMedCentralPubMedCrossRefGoogle Scholar
  72. Sorokin VA, Gelfand MS, Artamonova II. Evolutionary dynamics of clustered irregularly interspaced short palindromic repeat systems in the ocean metagenome. Appl Environ Microbiol. 2010;76:2136–44.PubMedCentralPubMedCrossRefGoogle Scholar
  73. Sullivan MB, Huang KH, Ignacio-Espinoza JC, Berlin AM, Kelly L, et al. Genomic analysis of oceanic cyanobacterial myoviruses compared with T4-like myoviruses from diverse hosts and environments. Environ Microbiol. 2010;12:3035–56.PubMedCentralPubMedCrossRefGoogle Scholar
  74. Temperton B, Gilbert JA, Quinn JP, McGrath JW. Novel analysis of oceanic surface water metagenomes suggests importance of polyphosphate metabolism in oligotrophic environments. PLoS One. 2011;6:e16499.PubMedCentralPubMedCrossRefGoogle Scholar
  75. Todd JD, Curson ARJ, Dupont CL, Nicholson P, Johnston AWB. The dddP gene, encoding a novel enzyme that converts dimethylsulfoniopropionate into dimethyl sulfide, is widespread in ocean metagenomes and marine bacteria and also occurs in some Ascomycete fungi. Environ Microbiol. 2009;11:1376–85.PubMedCrossRefGoogle Scholar
  76. Tripp HJ, Schwalbach MS, Meyer MM, Kitner JB, Breaker RR, Giovannoni SJ. Unique glycine-activated riboswitch linked to glycine-serine auxotrophy in SAR11. Environ Microbiol. 2009;11:230–8.PubMedCentralPubMedCrossRefGoogle Scholar
  77. Tripp HJ, Bench SR, Turk KA, Foster RA, Desany BA, Niazi F, et al. Metabolic streamlining in an open ocean nitrogen-fixing cyanobacterium. Nature. 2010;464:90–4.PubMedCrossRefGoogle Scholar
  78. Tripp HJ, Hewson I, Boyarsky S, Stuart JM, Zehr JP. Misannotations of rRNA can now generate 90 % false positive protein matches in metatranscriptomic studies. Nucleic Acids Res. 2011;39:8792–802.PubMedCentralPubMedCrossRefGoogle Scholar
  79. Tucker KP, Parsons R, Symonds EM, Breitbart M. Diversity and distribution of single-stranded DNA phages in the North Atlantic Ocean. ISME J. 2011;5:822–30.PubMedCentralPubMedCrossRefGoogle Scholar
  80. Venter JC, Remington K, Heidelberg JF, Halpern AL, Rusch D, Eisen JA, et al. Environmental genome shotgun sequencing of the Sargasso Sea. Science. 2004;304:66–74.PubMedCrossRefGoogle Scholar
  81. Vila-Costa M, Rinta-Kanto JM, Sun SL, Sharma S, Poretsky R, Moran MA. Transcriptomic analysis of a marine bacterial community enriched with dimethylsulfoniopropionate. ISME J. 2010;4:1410–20.PubMedCrossRefGoogle Scholar
  82. Wilhelm L, Tripp HJ, Givan S, Smith D, Giovannoni S. Natural variation in SAR11 marine bacterioplankton genomes inferred from metagenomic data. Biol Direct. 2007;2:27.PubMedCentralPubMedCrossRefGoogle Scholar
  83. Williamson SJ, Rusch DB, Yooseph S, Halpern AL, Heidelberg KB, Glass JI, et al. The Sorcerer II Global Ocean Sampling expedition: metagenomic characterization of viruses within aquatic microbial samples. PLoS One. 2008;3:e1456.PubMedCentralPubMedCrossRefGoogle Scholar
  84. Worden AZ, Lee J-H, Mock T, Rouze P, Simmons MP, et al. Green evolution and dynamic adaptations revealed by genomes of the marine picoeukaryotes Micromonas. Science. 2009;324:268.PubMedCrossRefGoogle Scholar
  85. Woyke T, Xie G, Copeland A, Gonzalez JM, Han C, Kiss H, et al. Assembling the marine metagenome, one cell at a time. PLoS One. 2009;4:e5299.PubMedCentralPubMedCrossRefGoogle Scholar
  86. Wu D, Wu M, Halpern A, Rusch DB, Yooseph S, Frazier M, et al. Stalking the fourth domain in metagenomic data: searching for, discovering, and interpreting novel, deep branches in marker gene phylogenetic trees. PLoS One. 2011;6:e18011.PubMedCentralPubMedCrossRefGoogle Scholar
  87. Yoon HS, Price DC, Stepanauskas R, Rajah VD, Sieracki ME, Wilson WH, et al. Single-cell genomics reveals organismal interactions in uncultivated marine protists. Science. 2011;332:714–7.PubMedCrossRefGoogle Scholar
  88. Yooseph S, Sutton G, Rusch DB, Halpern AL, Williamson SJ, Remington K, et al. The S orcerer II Global Ocean Sampling expedition: expanding the universe of protein families. PLoS Biol. 2007;5:e16.PubMedCentralPubMedCrossRefGoogle Scholar
  89. Yooseph S, Nealson KH, Rusch DB, McCrow JP, Dupont CL, Kim M, et al. Genomic and functional adaptation in surface ocean planktonic prokaryotes. Nature. 2010;468:60–6.PubMedCrossRefGoogle Scholar
  90. Yutin N, Suzuki MT, Teeling H, Weber M, Venter JC, Rusch DB, Beja O. Assessing diversity and biogeography of aerobic anoxygenic phototrophic bacteria in surface waters of the Atlantic and Pacific Oceans using the Global Ocean Sampling expedition metagenomes. Environ Microbiol. 2007;9:1464–75.PubMedCrossRefGoogle Scholar
  91. Zehr JP, Bench SR, Carter BJ, Hewson I, Niazi F, Shi T, et al. Globally distributed uncultivated oceanic N2-fixing cyanobacteria lack oxygenic photosystem II. Science. 2008;322:1110–2.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Irina N. Shilova
    • 1
    Email author
  • Anne W. Thompson
    • 2
  • Ian Hewson
    • 3
  • Jonathan P. Zehr
    • 1
  1. 1.Ocean Sciences DepartmentUniversity of California Santa CruzSanta CruzUSA
  2. 2.Advanced Cytometry Group, BD BiosciencesSeatleUSA
  3. 3.Department of MicrobiologyCornell UniversityIthacaUSA