Encyclopedia of Metagenomics

Living Edition
| Editors: Karen E. Nelson

Glacier Metagenomics

  • Silja Brady
  • Rolf Daniel
Living reference work entry
DOI: https://doi.org/10.1007/978-1-4614-6418-1_38-5

Synonyms

Definition

The application of metagenomic approaches unraveled the abundance of microbes in different zones of glaciers derived from worldwide locations. Glacier microbes bear a great potential for the discovery of novel cold-adapted enzymes. Next-generation sequencing sheds light on structure and metabolism of glacial ice microbial communities.

Introduction

Over 75 % of the Earth’s biosphere is constantly exposed to temperatures below 5 °C. Permanently cold ecosystems include polar regions, deep sea, high mountains, glaciers, man-made refrigeration systems, caves, and the upper atmosphere. These environments are inhabited by psychrophilic (cold-loving) and psychrotolerant (cold-adapted) organisms. Extreme organisms in cold ecosystems are cryophiles comprising bacteria, archaea, and eukaryotes, which are able to live and proliferate at temperatures below 0 °C. Especially frozen environments such as tundra, glacier, lake ice, sea ice, or...

Keywords

Microbial Community Terminal Restriction Fragment Length Polymorphism Lipase Gene Cryoconite Hole Freeze Environment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, log in to check access.

References

  1. Anesio AM, Hodson AJ, Fritz A, et al. High microbial activity on glaciers: importance to the global carbon cycle. Glob Chang Biol. 2009;15(4):955–60.CrossRefGoogle Scholar
  2. Bhatia M, Sharp M, Foght J. Distinct bacterial communities exist beneath a high Arctic polythermal glacier. Appl Environ Microbiol. 2006;72:5838–45.PubMedCentralPubMedCrossRefGoogle Scholar
  3. Breezee J, Cady N, Staley J. Subfreezing growth of the sea ice bacterium “Psychromonas ingrahamii”. Microb Ecol. 2004;47:300–4.PubMedCrossRefGoogle Scholar
  4. Cameron KA, Hodson AJ, Osborn AM. Structure and diversity of bacterial, eukaryotic and archaeal communities in glacial cryoconite holes from the Arctic and the Antarctic. FEMS Microbiol Ecol. 2012; 82(2): 254–267.Google Scholar
  5. Casanueva A, Tuffin M, Cary C, et al. Molecular adaptations to psychrophily: the impact of ‘omic’ technologies. Trends Microbiol. 2010;18:374–81.PubMedCrossRefGoogle Scholar
  6. Cheng SM, Foght JM. Cultivation-independent and -dependent characterization of bacteria resident beneath John Evans Glacier. FEMS Microbiol Ecol. 2007;59:318–30.PubMedCrossRefGoogle Scholar
  7. Christner BC, Mikucki JA, Foreman CM, et al. Glacial ice cores: a model system for developing extraterrestrial decontamination protocols. Icarus. 2005;174:572–84.CrossRefGoogle Scholar
  8. D’Amico S, Collins T, Marx JC, et al. Psychrophilic microorganisms: challenges for life. EMBO Rep. 2006;7:385–9.PubMedCentralPubMedCrossRefGoogle Scholar
  9. Deming JW. Psychrophiles and polar regions. Curr Opin Microbiol. 2002;5:301–9.PubMedCrossRefGoogle Scholar
  10. Feller G, Gerday C. Psychrophilic enzymes: hot topics in cold adaptation. Nat Rev Microbiol. 2003;1:200–8.PubMedCrossRefGoogle Scholar
  11. Finster K. Anaerobic bacteria and archaea in cold ecosystems. In: Margesin R, Schinner F, Marx JC, Gerday C, editors. Psychrophiles: from biodiversity to biotechnology. 1st ed. Berlin: Springer; 2008. p. 365–79.Google Scholar
  12. Foght J, Aislabie J, Turner S, et al. Culturable bacteria in subglacial sediments and ice from two Southern Hemisphere glaciers. Microb Ecol. 2004;47:329–40.PubMedCrossRefGoogle Scholar
  13. Junge K, Eicken H, Swanson BD, et al. Bacterial incorporation of leucine into protein down to-20 C with evidence for potential activity in sub-eutectic saline ice formations. Cryobiology. 2006;52:417–29.PubMedCrossRefGoogle Scholar
  14. Krause L, Diaz NN, Goesmann A, et al. Phylogenetic classification of short environmental DNA fragments. Nucleic Acids Res. 2008;36:2230–9.PubMedCentralPubMedCrossRefGoogle Scholar
  15. Liu YQ, Yao TD, Kang SC, et al. Microbial community structure in major habitats above 6000 m on Mount Everest. Chin Sci Bull. 2007;52:2350–7.CrossRefGoogle Scholar
  16. Liu Y, Yao T, Jiao N, et al. Bacterial diversity in the snow over Tibetan Plateau glaciers. Extremophiles. 2009;13:411–23.PubMedCrossRefGoogle Scholar
  17. Miteva V. Bacteria in snow and glacier ice. In: Margesin R, Schinner F, Marx JC, Gerday C, editors. Psychrophiles: from biodiversity to biotechnology. 1st ed. Berlin: Springer; 2008. p. 365–79.Google Scholar
  18. Miteva VI, Sheridan PP, Brenchley JE. Phylogenetic and physiological diversity of microorganisms isolated from a deep greenland glacier ice core. Appl Environ Microbiol. 2004;70:202–13.PubMedCentralPubMedCrossRefGoogle Scholar
  19. Parrilli E, Duilio A, Tutino ML. Heterologous protein expression in psychrophilic hosts. In: Margesin R, Schinner F, Marx JC, Gerday C, editors. Psychrophiles: from biodiversity to biotechnology. 1st ed. Berlin: Springer; 2008. p. 365–79.CrossRefGoogle Scholar
  20. Simon C, Wiezer A, Strittmatter AW, et al. Phylogenetic diversity and metabolic potential revealed in a glacier ice metagenome. Appl Environ Microbiol. 2009a;75:7519–26.PubMedCentralPubMedCrossRefGoogle Scholar
  21. Simon C, Herath J, Rockstroh S, et al. Rapid identification of genes encoding DNA polymerases by function-based screening of metagenomic libraries derived from glacial ice. Appl Environ Microbiol. 2009b;75:2964–8.PubMedCentralPubMedCrossRefGoogle Scholar
  22. Skidmore ML, Foght JM, Sharp MJ. Microbial life beneath a high Arctic glacier. Appl Environ Microbiol. 2000;66:3214–20.PubMedCentralPubMedCrossRefGoogle Scholar
  23. Skidmore M, Anderson SP, Sharp M, et al. Comparison of microbial community compositions of two subglacial environments reveals a possible role for microbes in chemical weathering processes. Appl Environ Microbiol. 2005;71:6986–97.PubMedCentralPubMedCrossRefGoogle Scholar
  24. Stibal M, Hasan F, Wadham JL, et al. Prokaryotic diversity in sediments beneath two polar glaciers with contrasting organic carbon substrates. Extremophiles. 2012;16:1–11.CrossRefGoogle Scholar
  25. Tung H, Price P, Bramall N, et al. Microorganisms metabolizing on clay grains in 3-km-deep Greenland basal ice. Astrobiology. 2006;6:69–86.PubMedCrossRefGoogle Scholar
  26. Willerslev E, Hansen AJ, Poinar HN. Isolation of nucleic acids and cultures from fossil ice and permafrost. Trends Ecol Evol. 2004;19:141–7.PubMedCrossRefGoogle Scholar
  27. Xiang S, Shang T, Chen Y, et al. Changes in diversity and biomass of bacteria along a shallow snow pit from Kuytun 51 glacier, Tianshan Mountains. J Geophys Res. 2009;114:G04008.Google Scholar
  28. Yuhong Z, Shi P, Liu W, et al. Lipase diversity in glacier soil based on analysis of metagenomic DNA fragments and cell culture. J Microbiol Biotechnol. 2009;19:888–97.PubMedCrossRefGoogle Scholar
  29. Zhang X, Ma X, Wang N, Yao T. New subgroup of Bacteroidetes and diverse microorganisms in Tibetan plateau glacial ice provide a biological record of environmental conditions. FEMS Microbiol Ecol. 2009;67:21–9.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Genomic and Applied Microbiology, Institute of Microbiology and GeneticsGeorg-August-Universität GöttingenGöttingenGermany