Skip to main content

Challenge of Metagenome Assembly and Possible Standards

  • Living reference work entry
  • First Online:
Encyclopedia of Metagenomics

Introduction

As technology and methodology have allowed for more advanced assemblies of metagenomes, the need for commensurate assignment of quality to these assemblies has become evident. There are currently no set standards for describing the quality of sequencing, assembly, or analysis of metagenomic assemblies. Uncorrected, this may lead to faulty conclusions based on assumptions that the assembly is more or less accurate, or representative of the sample, than it truly is. This need is similar to, but far more complex than, the dilemma that faced the microbial sequencing and assembly community as more and more genomes were sequenced with new technologies and assembled with novel algorithms.

For bacterial genomes, the quality of assembly and finishing efforts has been standardized for several years, resulting in a much better understanding of the types of analyses that can be performed on each level of finished genome and the resulting value. While the need for standards in...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Boisvert S, Laviolette F, et al. Ray: simultaneous assembly of reads from a mix of high-throughput sequencing technologies. J Comput Biol. 2010;17(11):1519–33.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chain PSG, Grafham DV, et al. Genome project standards in a New Era of sequencing. Science. 2009;326(5950):236–7.

    Article  CAS  PubMed  Google Scholar 

  • Delcher AL, Phillippy A, et al. Fast algorithms for large-scale genome alignment and comparison. Nucleic Acids Res. 2002;30(11):2478–83.

    Article  PubMed Central  PubMed  Google Scholar 

  • Godoy-Vitorino F, Goldfarb KC, et al. Comparative analyses of foregut and hindgut bacterial communities in hoatzins and cows. Isme J. 2012;6(3):531–41.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gordon D. Viewing and editing assembled sequences using Consed. Curr Protoc Bioinforma. 2003. Chapter 11: Unit11 12.

    Google Scholar 

  • Huttenhower C, Gevers D, et al. Structure, function and diversity of the healthy human microbiome. Nature. 2012;486(7402):207–14.

    Article  CAS  Google Scholar 

  • Kant R, van Passel MWJ, et al. Genome sequence of “Pedosphaera parvula” Ellin514, an aerobic verrucomicrobial isolate from pasture soil. J Bacteriol. 2011;193(11):2900–1.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lampe JW. The human microbiome project: getting to the guts of the matter in cancer epidemiology. Cancer Epidemiol Biomarkers Prev. 2008;17(10):2523–4.

    Article  PubMed  Google Scholar 

  • Langmead B, Trapnell C, et al. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 2009;10(3).

    Google Scholar 

  • Leung K, Zahn H, et al. A programmable droplet-based microfluidic device applied to multiparameter analysis of single microbes and microbial communities. Proc Natl Acad Sci. 2012;109(20):7665–70.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li H, Durbin R. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics. 2010;26(5):589–95.

    Article  PubMed Central  PubMed  Google Scholar 

  • Li H, Handsaker B, et al. The sequence alignment/map format and SAMtools. Bioinformatics. 2009;25(16):2078–9.

    Article  PubMed Central  PubMed  Google Scholar 

  • McGinnis S, Madden TL. BLAST: at the core of a powerful and diverse set of sequence analysis tools. Nucleic Acids Res. 2004;32(Web Server issue):W20–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Methe BA, Nelson KE, et al. A framework for human microbiome research. Nature. 2012;486(7402):215–21.

    Article  CAS  PubMed Central  Google Scholar 

  • Miller JR, Koren S, et al. Assembly algorithms for next-generation sequencing data. Genomics. 2010;95(6):315–27.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Namiki T, Hachiya T, et al. Metavelvet: an extension of velvet assembler to de novo metagenome assembly from short sequence reads. Nucleic Acids Res. 2012.

    Google Scholar 

  • Peng Y, Leung HCM, et al. Meta-IDBA: a de Novo assembler for metagenomic data. Bioinformatics. 2011;27(13):I94–101.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schatz MC, Phillippy AM. et al. Hawkeye and AMOS: visualizing and assessing the quality of genome assemblies. Brief Bioinform. 2011.

    Google Scholar 

  • Scholz MB, Lo CC, et al. Next generation sequencing and bioinformatic bottlenecks: the current state of metagenomic data analysis. Curr Opin Biotechnol. 2012;23(1):9–15.

    Article  CAS  PubMed  Google Scholar 

  • Yilmaz P, Gilbert JA, et al. The genomic standards consortium: bringing standards to life for microbial ecology. Isme J. 2011;5(10):1565–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew B. Scholz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this entry

Cite this entry

Scholz, M.B., Lo, CC., Chain, P. (2013). Challenge of Metagenome Assembly and Possible Standards. In: Nelson, K. (eds) Encyclopedia of Metagenomics. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6418-1_26-2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-6418-1_26-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-6418-1

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics