Skip to main content

Internal Combustion Engines , Alternative Fuels for

  • Reference work entry
  • First Online:
Transportation Technologies for Sustainability

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 749.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Advanced biofuel:

Renewable fuel not produced from food crops such as cellulosic biofuel and biomass-based diesel.

Alternative fuel:

A fuel that can serve or be used in place of another or an unconventional fuel choice.

Diesel gallon equivalent (DGE):

The amount of alternative fuel required to match the energy content of 1 gal of diesel fuel.

Gasoline gallon equivalent (GGE):

The amount of alternative fuel required to match the energy content of 1 gal of gasoline.

Mixture calorific value:

The amount of energy contained per volume of fresh charge typically at stoichiometric conditions that can be introduced into the cylinders of an internal combustion engine.

Renewable fuel:

A fuel created from resources that are never used up or can be replaced by new growth.

Bibliography

Primary Literature

  1. Dutton K (2006) A brief history of the car. New Ideas 1

    Google Scholar 

  2. Diesel R (1894) Theory and construction of a rotational heat motor. Spon & Chamberlain, London

    Google Scholar 

  3. MacLean H, Lave LB (2003) Evaluating automobile fuel/propulsion system technologies. Prog Energy Combust Sci 29:1–69

    Article  Google Scholar 

  4. Tanaka R (2007) Biofuels in Japan. Report by the British Embassy in Tokyo

    Google Scholar 

  5. Section 201-202 Renewable Fuel Standard (RFS) Energy Independence and Security Act of 2007 (Pub.L. 110-140, originally named the CLEAN Energy Act of 2007)

  6. Schnepf R, Yacobucci B (2010) Renewable Fuel Standard (RFS): Overview and issues. CRS Report for Congress, Order Code R40155

    Google Scholar 

  7. Sperling D, Gordon D (2009) Two billion cars: driving toward sustainability. Oxford University Press, New York, pp 42–43. ISBN 978-0-19-537664-7

    Google Scholar 

  8. Yacobucci BD (2008) Natural gas passenger vehicles: availability, cost, and performance. CRS Report for Congress. Order Code RS22971

    Google Scholar 

  9. Brazilian Automotive Industry Association – ANFAVEA, Brazilian Automotive Industry Yearbook 2010. Available online at http://anfavea2010.virapagina.com.br/anfavea2010/

  10. Energy Information Administration (2008) Annual survey of alternative fuel vehicle suppliers and users, “as reported in” Alternatives to traditional Transportation fuels 1998–2008 reports (Tables 14 or S1 depending on year of report). www.eia.doe.gov/cneaf/alternate/page/atftables/afv-atf2008.pdf

  11. US Energy Information Administration (EIA) (Apr 2010) EIA’s Alternatives to traditional transportation fuels, Table V1. www.eia.doe.gov/cneaf/alternate/page/atftables/afv-atf2008.pdf

  12. European Biodiesel Board (2009) http://www.ebb-eu.org/stats.php

  13. International Energy Agency (IEA) Statistics division (2007) Energy balances of OECD countries (2008 edition)–Extended balances and energy balances of Non-OECD countries (2007 edition)–Extended balances. IEA, Paris. http://data.iea.org/ieastore/default.asp

  14. http://www.biodiesel.org/buyingbiodiesel/plants/

  15. Boyd RA (2009) Proposed method of sale and quality specification for hydrogen vehicle fuel. Summary of current information. Standards Fuel Specifications Subcommittee (FSS). U.S. National Work Group for the Development of Commercial Hydrogen Measurement

    Google Scholar 

  16. American Petroleum Institute (API) (2001) Alcohols and ethers, Publication No. 4261, 3rd edn. API, Washington, DC

    Google Scholar 

  17. Whims J (2002) Pipelines considerations for ethanol, Agricultural marketing resource center. Kansas State University

    Google Scholar 

  18. Perry RH, Green DW (1999) Perry’s chemical engineers’ handbook. McGraw Hill, Malaysia

    Google Scholar 

  19. Heywood JB (1988) Internal combustion engine fundamentals. McGraw-Hill, New York

    Google Scholar 

  20. Andersen V, Anderson JE, Wallington TJ, Mueller SA, Nielsen OJ (2010) Vapor pressures of alcohol-gasoline blends. Energy Fuels 24:3647–3654

    Article  Google Scholar 

  21. The Royal Society (2008) Sustainable biofuels: prospects and challenges. The Royal Society, London. ISBN 978 0 85403 662 2

    Google Scholar 

  22. Bradley D (2009) Combustion and the design of future engine fuels. Proc. IMechE Part C: J. Mech Eng Sci 223:JMES1519. doi: 10.1243/09544062JMES1519

    Google Scholar 

  23. Foss M (2007) Introduction to LNG. An overview on liquefied natural gas (LNG), its properties, organization of the LNG industry and safety considerations

    Google Scholar 

  24. http://www.naturalgas.org/overview/background.asp

  25. Lapuerta M, Armas O, Rodrıguez-Fernandez J (2008) Effect of biodiesel fuels on diesel engine emissions. Prog Energy Combust Sci 34:198–223

    Article  Google Scholar 

  26. Teng H, McCandless JC, Schneyer JB (2004) Thermodynamic properties of dimethyl ether – an alternative fuel for compression-ignition engines. SAE Technical Paper 2004-01-0093

    Book  Google Scholar 

  27. Tilli A, Kaario O, Imperato M, Larmi M (2009) Fuel injection system simulation with renewable diesel fuels. SAE Technical paper 2009-24-0105

    Book  Google Scholar 

  28. Teng H, McCandless JC, Schneyer JB (2001) Thermochemical characteristics of dimethyl ether — an alternative fuel for compression-ignition engines. SAE Technical Paper 2001-01-0154

    Book  Google Scholar 

  29. Teng H, McCandless JC, Schneyer JB (2002) Viscosity and lubricity of (Liquid) dimethyl ether – an alternative fuel for compression-ignition engines. SAE Technical Paper 2002-01-0862

    Book  Google Scholar 

  30. Knothe G (2008) “Designer” biodiesel: optimizing fatty ester composition to improve fuel properties. Energy Fuels 22:1358–1364

    Article  Google Scholar 

  31. Knothe G (2005) Dependence of biodiesel fuel properties on the structure of fatty acid alkyl esters. Fuel Process Technol 86:1059–1070

    Article  Google Scholar 

  32. Sanford SD et al (2009) Feedstock and biodiesel characteristics report, Renewable Energy Group, Inc. www.regfuel.com

  33. Kinast JA (2003) Production of biodiesel from multiple feedstocks and properties of biodiesel and biodiesel/diesel blends, NREL/SR-510-31460, March 2003

    Book  Google Scholar 

  34. Abu-Zaid M, Badran O, Yamin J (2004) Effect of methanol addition on the performance of spark ignition engines. Energy Fuels 18:312–315

    Article  Google Scholar 

  35. Song R, Hu T, Liu S, Liang X (2008) Combustion characteristics of SI engine fueled with methanol gasoline blends during cold start. Front Energy Power Eng China 2(4):395–400

    Article  Google Scholar 

  36. Caton JA (2009) A thermodynamic evaluation of the use of alcohol fuels in a spark-ignition engine. SAE Paper No. 2009-01-2621

    Google Scholar 

  37. Li J, Gong C, Su Y, Dou H, Liu X (2010) Effect of injection and ignition timings on performance and emissions from a spark-ignition engine fueled with methanol. Fuel 89:3919–3925

    Article  Google Scholar 

  38. Environmental Protection Agency. Regulation of fuels and fuel additives; definition of substantially similar. [FRL-3856-9]

    Google Scholar 

  39. http://www.faqs.org/faqs/autos/gasoline-faq/part1/section-4.html

  40. http://www.epa.gov/otaq/regs/fuels/additive/e15/420f10054.htm

  41. Ré-Poppi N, Almeida FFP, Cardoso CAL, Raposo JL Jr, Viana LH, Silva TQ, Souza JLC, Ferreira VS (2009) Screening analysis of type C Brazilian gasoline by gas chromatography – Flame ionization detector. Fuel 88:418–423

    Article  Google Scholar 

  42. Bennett J (2007) Bioethanol in road transport fuels. Presentation at the Royal Society ‘International Biofuels Opportunities’ conference and workshop, London

    Google Scholar 

  43. Joseph Jr H (2007) The vehicle adaptation to ethanol fuel. Presentation at the Royal Society ‘International Biofuels Opportunities’ conference and workshop, London

    Google Scholar 

  44. Jones B, Mead G, Steevens P, Timanus M (2008) The Effects of E20 on metals used in automotive fuel system components. Report by the Minnesota Center for automotive research at Minnesota State University, Mankato

    Google Scholar 

  45. Jones B, Mead G, Steevens P (2008) The Effects of E20 on plastic automotive fuel system components. Report by the Minnesota center for automotive research at Minnesota State University, Mankato

    Google Scholar 

  46. Jones B, Mead G, Steevens P, Connors C (2008) The Effects of E20 on elastomers used in automotive fuel system components. Report by the Minnesota center for automotive research at Minnesota State University, Mankat

    Google Scholar 

  47. Kar K, Cheng W, Ishii K (2009) Effects of ethanol content on gasohol PFI engine wide-open-throttle operation. SAE Paper No. 2009-01-1907

    Google Scholar 

  48. Grabner P, Eichlseder H, Eckhard G (2010) Potential of E85 direct injection for passenger car application. SAE Paper No. 2010-01-2086

    Book  Google Scholar 

  49. Saab engine specifications (2008) http://dyc.saab-web.com/main/GLOBAL/en/model/95/techspecs.shtml. Accessed 31 May 2011

  50. West B, López A, Theiss T, Graves R, Storey J, Lewis S (2007) Fuel economy and emissions of the ethanol-optimized Saab 9-5 biopower. SAE Paper No. 2007-01-3994

    Book  Google Scholar 

  51. Wallner T, Frazee R (2010) Study of regulated and non-regulated emissions from combustion of gasoline, alcohol fuels and their blends in a DI-SI engine. SAE Paper No. 2010-01-1571

    Book  Google Scholar 

  52. Boretti A (2010) Analysis of design of pure ethanol engines. SAE Paper No. 2010-01-1453

    Book  Google Scholar 

  53. Kabasin D, Hoyer K, Kazour J, Lamers R, Hurter T (2009) Heated injectors for ethanol cold starts. SAE Paper No. 2009-01-0615

    Google Scholar 

  54. Jeuland N, Montagne X, Gautrot X (2004) Potentiality of ethanol as a fuel for dedicated engine. Oil & Gas Sci Technol Rev IFP 59(6):559–570

    Article  Google Scholar 

  55. Schubert A (2010) Expanding the role of biofuels through development of advanced BioButanol. Biofuels Workshop. SAE International Fuels & Lubricants Meeting. Rio de Janeiro

    Google Scholar 

  56. Wallner T, Miers S, McConnell S (2009) A comparison of ethanol and butanol as an oxygenate and their effect on efficiency, combustion performance and emissions of a direct-injected 4-cylinder engine. J Engin Gas Turbines Power 131(3):032802–032809

    Article  Google Scholar 

  57. Cooney C, Wallner T, McConnell S, Gillen J, Abell C, Miers S (2009) Effects of blending gasoline with ethanol and butanol on engine efficiency and emissions. In: ASME Spring technical conference. Milwaukee/WI. ASME Paper No. ICES2009-76155

    Google Scholar 

  58. Szwaja S, Naber JD (2010) Combustion of n-butanol in a spark-ignition IC engine. Fuel 89:1573–1582

    Article  Google Scholar 

  59. Dernotte J, Mounaim-Rousselle C, Halter F, Seers P (2010) Evaluation of Butanol–gasoline blends in a port fuel-injection, Spark-ignition engine. Oil & Gas Science and Technology – Rev IFP 65(2):345–351

    Article  Google Scholar 

  60. http://www.lpgli.com/features.html

  61. Li X, Yang L, Pang M, Liang X (2010) Effect of LPG injection methods on engine performance. Adv Mater Res 97–101:2279–2282

    Article  Google Scholar 

  62. LPG Autogas (2005) Expansion Issue 1

    Google Scholar 

  63. Saraf RR, Thipse SS, Saxena PK (2009) Comparative emission analysis of gasoline/LPG automotive bifuel engine. Int J Environ Sci Eng 1:4

    Google Scholar 

  64. Energy Information Administration, Documentation for Emissions of Greenhouse Gases in the U.S. 2005, DOE/EIA-0638 (2005), Oct 2007

    Google Scholar 

  65. Oh S, Lee S, Choi Y, Kang K, Cho J, Cha K (2010) Combustion and emission characteristics in a direct injection LPG/Gasoline spark ignition engine. SAE Paper No. 2010-01-1461

    Book  Google Scholar 

  66. Boretti AA, Watson HC (2009) Development of a direct injection high flexibility CNG/LPG spark ignition engine. SAE Paper No. 2009-01-1969

    Book  Google Scholar 

  67. Heywood JB, Welling OZ (2009) Trends in performance characteristics of modern automobile SI and diesel engines. SAE Paper No. 2009-01-1892

    Google Scholar 

  68. CIMAC Working Group “Gas Engines” (2008) Information about the use of LNG as engine fuel. CIMAC position paper

    Google Scholar 

  69. Westport Innovations Inc (2010) Direct injection natural gas demonstration project. Westport GX Geavy-Duty LNG engine, Canada

    Google Scholar 

  70. Mattas G, Thijssen B (2004) Dual-fuel diesel engines for LNG carriers. Marine News 1

    Google Scholar 

  71. ETSAP (2010) Energy Technology Systems Analysis Programme. Automotive LPG and Natural gas engines. http://www.etsap.org

  72. NREL (1999) Honda civic dedicated CNG Sedan. Fact Sheet

    Google Scholar 

  73. Honda website. http://automobiles.honda.com

  74. Thien U (2008) Widening the driving range of NGV ‘s. Presentation 6th European Forum Gas, Bratislava

    Google Scholar 

  75. Korakianitis T, Namasivayam AM, Crookes RJ (2011) Natural-gas fueled spark-ignition (SI) and compression-ignition (CI) engine performance and emissions. Prog Energy Combust Sci 37(1):89–112

    Google Scholar 

  76. Aslam MU, Masjuki HH, Kalam MA, Abdesselam H, Mahlia TMI, Amalina MA (2006) An experimental investigation of CNG as an alternative fuel for a retrofitted gasoline vehicle. Fuel 85:717–724

    Article  Google Scholar 

  77. Geok HH, Mohamad TI, Abdullah S, Ali Y, Shamsudeen A, Adril E (2009) Experimental investigation of performance and emission of a sequential port injection natural gas engine. Eur J Sci Res 30(2):204–214, ISSN: 1450-216X

    Google Scholar 

  78. Cho HM, He B-Q (2008) Combustion and emissions characteristics of a lean burn natural gas engine. Int J Automot Technol 9(4):415–422

    Article  Google Scholar 

  79. Packham K (2007) Lean-burn engine technology increases efficiency, reduces NOx emissions. Power topic #7009. Technical information from cummins power generation

    Google Scholar 

  80. Zeng K, Huang Z, Liu B, Liu L, Jiang D, Ren Y, Wang J (2006) Combustion characteristics of a direct-injection natural gas engine under various fuel injection timings. Appl Therm Eng 26:806–813

    Article  Google Scholar 

  81. Goto Y, Sato Y, Narusawa K (1998) Combustion and emissions characteristics in a direct injection natural gas engine using multiple stage injection. Proceedings of the International Symposium on Diagnostics and Modeling of Combustion in Internal Combustion Engines (COMODIA), 1998. Japan Society of Mechanical Engineers, pp 543–548

    Google Scholar 

  82. Tunestål P, Christensen M, Einewall P, Andersson T, Johansson B (2002) Hydrogen addition for improved lean burn capability of slow and fast burning natural gas combustion chambers. SAE Paper No 2002-01-2686

    Google Scholar 

  83. ASTM Standardization News (2010) The renewed promise of natural gas. ASTM Committee D03 and natural gas standards by Adele Bassett. May/June 2010

    Google Scholar 

  84. Hallmannsegger M, Fickel H-C (2004) The mixture formation process of an internal combustion engine for zero CO2-emission vehicles fueled with cryogenic hydrogen. In: IFP International Conference, Rueil-Malmaison, France

    Google Scholar 

  85. DOE EERE website. http://www1.eere.energy.gov/hydrogenandfuelcells/storage/current_technology.html?m=1&

  86. Wallner T (2009) Opportunities and risks for hydrogen internal combustion engines in the United States. In: Conference proceedings “Der Arbeitsprozess der Verbrennungskraftmaschine.” Verlag d. Technischen Universität Graz. ISBN 978-3-85125-068-8

    Google Scholar 

  87. Rottengruber H, Berckmueller M, Elsaesser G, Brehm N, Schwarz C (2004) Operation strategies for hydrogen engines with high power density and high efficiency. In: 15th annual U.S. hydrogen conference, Los Angeles, CA

    Google Scholar 

  88. Verhelst S, Wallner T (2009) Hydrogen-fueled internal combustion engines (H2ICEs). Prog Energy Combust Sci 35:490–527

    Article  Google Scholar 

  89. Eichlseder H, Wallner T, Freymann R, Ringler J (2003) The potential of hydrogen internal combustion engines in a future mobility scenario. SAE Paper No. 2003-01-2267

    Google Scholar 

  90. Welch A, Mumford D, Munshi S, Holbery J, Boyer B, Younkins M, Jung H (2008) Challenges in developing hydrogen direct injection technology for internal combustion engines. SAE Paper No. 2008-01-2379

    Google Scholar 

  91. Heindl R, Eichlseder H, Spuller C, Gerbig F, Heller K (2009) New and innovative combustion systems for the H2-ICE: compression ignition and combined processes. SAE Paper No. 2009-01-1421

    Google Scholar 

  92. Obermair H, Scarcelli R, Waller T (2010) Efficiency improved combustion system for hydrogen direct injection operation. SAE Paper No. 2010-01-2170

    Google Scholar 

  93. Tanno S, Ito Y, Michikawauchi R, Nakamura M, Tomita H (2010) High-efficiency and Low-NOx hydrogen combustion by high pressure direct injection. SAE Paper No. 2010-01-2173

    Google Scholar 

  94. Tang X, Stockhausen WF, Kabat DM, Natkin RJ, Heffel JW (2002) FordP hydrogen engine dynamometer development. SAE Paper No. 2002-01-0242

    Google Scholar 

  95. Salimi F, Shamekhi AH, Pourkhesalian AM (2009) Role of mixture richness, spark and valve timing in hydrogen-fuelled engine performance and emission. Int J Hydrogen Energy 34:3922–3929

    Article  Google Scholar 

  96. ETEC hydrogen internal combustion engine full-size pickup truck conversion. Hydrogen ICE truck brochure

    Google Scholar 

  97. Wallner T, Lohse-Busch H, Shidore N (2008) Operating strategy for a hydrogen engine for improved drive-cycle efficiency and emissions behavior. Int J Hydrogen Energy 34:4617–4625

    Article  Google Scholar 

  98. Wimmer A, Wallner T, Ringler J, Gerbig F (2005) H2-direct injection – a highly promising combustion concept. SAE Paper No. 2005-01-0108

    Google Scholar 

  99. Wallner T, Lohse-Busch H, Gurski S, Duoba M, Thiel W, Martin D, Korn T (2008) Fuel economy and emissions evaluation of a BMW hydrogen 7 mono-fuel demonstration vehicle. Int J Hydrogen Energy 33:7607–7618

    Article  Google Scholar 

  100. http://www.biodiesel.org/resources/biodiesel_basics/

  101. United States Environmental Agency (2002) A comprehensive analysis of biodiesel impacts on exhaust emissions. EPA420-P-02-001, Oct 2002

    Google Scholar 

  102. Mueller CJ, Boehman AL, Martin GC (2009) An experimental investigation of the origin of increased NOx emissions when fueling a heavy-duty compression-ignition engine with soy biodiesel. SAE Int J Fuels Lubr 2:789–816

    Article  Google Scholar 

  103. Graboski et al (2003) The effect of biodiesel composition on engine emissions from a DDC series 60 engine. NREL/SR-510-31461

    Google Scholar 

  104. Agarwal AK (2006) Biofuels (alcohols and biodiesel) applications as fuels for internal combustion engines. Prog Energy Combust Sci 33:233–271

    Article  Google Scholar 

  105. Kuronen M, Mikkonen S, Aakko P, Murtonen T (2007) Hydrotreated vegetable oil as fuel for heavy duty diesel engines. SAE Technical Paper 2007-01-4031

    Google Scholar 

  106. Aatola H, Larmi M, Sarjovaara T, Mikkonen S (2008) Hydrotreated Vegetable Oil (HVO) as a renewable diesel fuel: trade-off between NOx, particulate emission, and fuel consumption of a heavy duty engine. SAE Technical Paper 2008-01-2500

    Google Scholar 

  107. Miers SA, Ng H, Ciatti SA, Stork K (2005) Emissions, performance, and In-cylinder combustion analysis in a light-duty diesel engine operating on a Fischer-Tropsch, Biomass-to-Liquid Fuel. SAE Technical Paper 2005-01-367

    Google Scholar 

  108. Gill SS et al (2010) Combustion characteristics and emissions of Fischer Tropsch diesel fuels in IC engines. Progr Energy Combust Sci 31:466–487. doi:10.1016/j.pecs.2010.09.001

    Google Scholar 

  109. Arcoumanis C, Bae C, Crookes R, Kinoshita E (2008) The potential of di-methyl ether (DME) as an alternative fuel for compression-ignition engines: a review. Fuel 87:1014–1030

    Article  Google Scholar 

  110. Semelsberger TA, Borup RL, Greene HL (2006) Dimethyl ether (DME) as an alternative fuel. J Power Sour 156:497–511

    Article  Google Scholar 

  111. McCormick RL, Parish R (2001) Advanced petroleum based fuels Program and renewable diesel program milestone report: technical barriers to the use of ethanol in diesel fuel. NREL/MP-540-32674

    Google Scholar 

  112. Waterland LR, Venkatesh S, Unnasch S (2003) Safety and performance assessment of ethanol/diesel blends (E-diesel). Subcontractor Report NREL/SR-540-34817

    Google Scholar 

  113. Hansen AC, Zhang Q, Lyne PWL (2005) Ethanol - diesel fuel blends – a review. Bioresour Technol 96:277–285

    Article  Google Scholar 

  114. Rakopoulos CD, Antonopoulos KA, Rakopoulos DC (2007) Experimental heat release analysis and emissions of a HSDI diesel engine fueled with ethanol–diesel fuel blends. Energy 32:1791–1808

    Article  Google Scholar 

  115. Sayin C (2010) Engine performance and exhaust gas emissions of methanol and ethanol–diesel blends. Fuel 89:3410–3415

    Article  Google Scholar 

  116. Miers S, Carlson R, Ng H, McConnell S, Wallner T, LeFeber J (2008) Drive cycle analysis of butanol/diesel blends in a light-duty vehicle. SAE Paper No. 2008-01-2381

    Google Scholar 

  117. Rakopoulos DC, Rakopoulos CD, Hountalas DT, Kakaras EC, Giakoumis EG, Papagiannakis RG (2010) Investigation of the performance and emissions of bus engine operating on butanol/diesel fuel blends. Fuel 89:2781–2790

    Article  Google Scholar 

Books and Reviews

  • Agarwal AK (2007) Biofuels (alcohols and biodiesel) applications as fuels for internal combustion engines. Prog Energy Combust Sci 33:233–271

    Article  Google Scholar 

  • Eichlseder H, Klell M (2008) Hydrogen in automotive engineering (in German, Wasserstoff in der Fahrzeugtechnik). Vieweg + Teubner, Wiesbaden. ISBN 978-9-8348-0478-5

    Google Scholar 

  • Huo H, Wu Y, Wang M (2009) Total versus urban: well-to-wheels assessment of criteria pollutant emissions from various vehicle/fuel systems. Atmos Environ 43:1796–1804

    Article  Google Scholar 

  • MacLeana HL, Lave LB (2003) Evaluating automobile fuel/propulsion system technologies. Prog Energy Combust Sci 29:1–69

    Article  Google Scholar 

  • Pischinger R, Klell M, Sams T (2002) Thermodynamics of internal combustion engines (in German: Thermodynamik der Verbrennungskraftmaschine). Springer, Wien. ISBN 3-211-83679-9

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Wallner Ph.D .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this entry

Cite this entry

Wallner, T., Miers, S.A. (2013). Internal Combustion Engines , Alternative Fuels for. In: Ehsani, M., Wang, FY., Brosch, G.L. (eds) Transportation Technologies for Sustainability. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5844-9_865

Download citation

Publish with us

Policies and ethics