Transportation Technologies for Sustainability

2013 Edition
| Editors: Mehrdad Ehsani, Fei-Yue Wang, Gary L. Brosch

Cooperative Group of Vehicles and Dangerous Situations, Recognition of

  • Kym Watson
  • Christian Frese
  • Thomas Batz
  • Jürgen Beyerer
Reference work entry
DOI: https://doi.org/10.1007/978-1-4614-5844-9_792

Definition of the Subject

The subject of this entry is cooperation among cognitive vehicles with the aim of increasing traffic safety . This includes the formation of cooperative groups, the recognition of dangerous situations using stochastic prediction methods, and the planning of cooperative maneuvers to avoid collisions (see Fig. 1).
This is a preview of subscription content, log in to check access

Notes

Acknowledgments

The authors’ research has been partially supported by Deutsche Forschungsgemeinschaft (German Research Foundation) within the Transregional Collaborative Research Center 28 “Cognitive Automobiles.”

Bibliography

  1. 1.
    Vahidi A, Eskandarian A (2003) Research advances in intelligent collision avoidance and adaptive cruise control. IEEE Trans Intell Transp Syst 4(3):143–153CrossRefGoogle Scholar
  2. 2.
    Tideman M, van der Voort MC, van Arem B, Tillema F (2007) A review of lateral driver support systems. In: Proceedings of the IEEE intelligent transportation systems conference, Seattle, Washington, pp 992–999Google Scholar
  3. 3.
    Buehler M, Iagnemma K, Singh S (eds) (2009) The DARPA urban challenge – autonomous vehicles in city traffic. In: Springer tracts in advanced robotics, vol 56. Springer, BerlinGoogle Scholar
  4. 4.
    Hartenstein H, Laberteaux K (2008) A tutorial survey on vehicular ad hoc networks. IEEE Commun Mag 46(6):164–171CrossRefGoogle Scholar
  5. 5.
    Schulze M, Nöcker G, Böhm K (2005) PReVENT: a European program to improve active safety. In: Proceedings of the 5th international conference on intelligent transportation systems telecommunications, BrestGoogle Scholar
  6. 6.
    Adler C, Straßberger M (2006) Putting together the pieces – a comprehensive view on cooperative local danger warning. In: Proceedings of the world congress on intelligent transport systems and services, LondonGoogle Scholar
  7. 7.
    Dao T-S, Ng L, Clark C, Huissoon JP (2008) Realtime experiments in Markov-based lane position estimation using wireless ad-hoc network. In: Proceedings of the IEEE intelligent vehicles symposium, Eindhoven, pp 901–906Google Scholar
  8. 8.
    Tischler K, Vogt H (2007) A sensor data fusion approach for the integration of negative information. In: Proceedings of conference on information fusion, QuebecGoogle Scholar
  9. 9.
    Huang D, Leung H (2005) An expectation-maximization-based interacting multiple model approach for cooperative driving systems. IEEE Trans Intell Transp Syst 6(2):206–228CrossRefMathSciNetGoogle Scholar
  10. 10.
    Varaiya P (1993) Smart cars on smart roads: problems of control. IEEE Trans Autom Control 38(2):195–207CrossRefMathSciNetGoogle Scholar
  11. 11.
    Zambou N, Enning M, Abel D (2004) Nonlinear spacing control of following vehicles within platoon – a controlled Lagrangian approach. In: IFAC symposium on nonlinear control systems, Stuttgart, pp 931–936Google Scholar
  12. 12.
    Dao T-S, Clark C, Huissoon JP (2008) Distributed platoon assignment and lane selection for traffic flow optimization. In: Proceedings of the IEEE intelligent vehicles symposium, Eindhoven, pp 739–744Google Scholar
  13. 13.
    Li L, Wang F-Y (2006) Cooperative driving at blind crossings using intervehicle communication. IEEE Trans Veh Technol 55(6):1712–1724CrossRefGoogle Scholar
  14. 14.
    Schepperle H, Böhm K, Forster S (2007) Traffic management based on negotiations between vehicles – a feasibility demonstration using agents. In: Workshop on agent mediated electronic commerce, HonoluluGoogle Scholar
  15. 15.
    Roughgarden T (2005) Selfish routing and the price of anarchy. MIT Press, Cambridge, MAGoogle Scholar
  16. 16.
    Frese C, Beyerer J, Zimmer P (2007) Cooperation of cars and formation of cooperative groups. In: Proceedings of the IEEE intelligent vehicles symposium, Istanbul, pp 227–232Google Scholar
  17. 17.
    Frese C, Batz T, Wieser M, Beyerer J (2008) Life cycle management for cooperative groups of cognitive automobiles in a distributed environment. In: Proceedings of the IEEE intelligent vehicles symposium, EindhovenGoogle Scholar
  18. 18.
    Schultes D (2008) Route planning in road networks. PhD thesis, Universität Karlsruhe (TH)Google Scholar
  19. 19.
    Cormen T, Leiserson C, Rivest R (2001) Introduction to algorithms, 2nd edn. MIT Press, Cambridge, MAMATHGoogle Scholar
  20. 20.
    Vacek S, Nagel R, Batz T, Moosmann F, Dillmann R (2007) An integrated simulation framework for cognitive automobiles. In: Proceedings of the IEEE intelligent vehicles symposium, Istanbul, Türkei, pp 221–226Google Scholar
  21. 21.
    Munaka T, Yamamoto T, Watanabe T (2005) A reliable advanced-join system for data multicasting in ITS networks. IEEE Trans Intell Transp Syst 6(4):424–438CrossRefGoogle Scholar
  22. 22.
    Chen W, Lee J, Hikita T, Onishi R (2007) Embedded multicasting with vehicle local peer group for efficient vehicle communications. In: Proceedings of the IEEE workshop on vehicle-to-vehicle communications, IstanbulGoogle Scholar
  23. 23.
    Mocito J, Rodrigues L (2006) Reconfigurable architecture for group communication support in hybrid networks. In: Koldehofe B (ed) Proceedings of the 4th MiNEMA workshop, SintraGoogle Scholar
  24. 24.
    Miller J (2008) Vehicle-to-vehicle-to-infrastructure (V2V2I) intelligent transportation system architecture. In: Proceedings of the IEEE intelligent vehicles symposium, Eindhoven, pp 715–720Google Scholar
  25. 25.
    Huang Q, Julien C, Roman G-C (2004) Relying on safe distance to achieve strong partitionable group membership in ad hoc networks. IEEE Trans Mob Comput 3(2):192–205CrossRefGoogle Scholar
  26. 26.
    Shimura A, Sakaibara T, Hiraiwa M, Aizono T (2003) Proposal of an autonomous group-management model and its application to intelligent transport system. In: Proceedings of the 6th international symposium on autonomous decentralized systems, PisaGoogle Scholar
  27. 27.
    Fujii H, Akiyama M, Tokuda K (1999) Inter-vehicle communications protocol for group cooperative driving. In: Proceedings of the IEEE vehicular technology conference, Amsterdam, The NetherlandsGoogle Scholar
  28. 28.
    Huang J, Tan H-S (2006) Design and implementation of a cooperative collision warning system. In: Proceedings of the IEEE intelligent transportation systems conference, TorontoGoogle Scholar
  29. 29.
    Clark C (2004) Dynamic robot networks: a coordination platform for multi-robot systems. PhD thesis, Stanford UniversityGoogle Scholar
  30. 30.
    Premvuti S, Yuta S (1990) Consideration on the cooperation of multiple autonomous mobile robots. In: Proceedings of the IEEE/RSJ conference on intelligent robots and systems, IbarakiGoogle Scholar
  31. 31.
    Briesemeister L (2001) Group membership and communication in highly mobile ad hoc networks. Dissertation, Technische Universität BerlinGoogle Scholar
  32. 32.
    Pallottino L, Scordio V, Bicchi A (2004) Decentralized cooperative conflict resolution among multiple autonomous mobile agents. In: Proceedings of the IEEE conference on decision and control, Atlantis, Paradise IslandGoogle Scholar
  33. 33.
    Ragothaman V, Baloch F, Pendse R (2006) Unassisted aircraft landing via co-operative data exchange. In: Digital avionics systems conference, PortlandGoogle Scholar
  34. 34.
    Chisalita I, Shahmehri N (2004) A context-based vehicular communication protocol. In: Proceedings of the IEEE symposium on personal, indoor and mobile radio communications, BarcelonaGoogle Scholar
  35. 35.
    Nett E, Schemmer S (2003) Reliable real-time communication in cooperative mobile applications. IEEE Trans Comput 52(2):166–180CrossRefGoogle Scholar
  36. 36.
    Meier R, Killijian M-O, Cunningham R, Cahill V (2001) Towards proximity group communication. In: Middleware for mobile computing, HeidelbergGoogle Scholar
  37. 37.
    Dao T-S, Clark C, Huissoon JP (2007) Optimized lane assignment using inter-vehicle communication. In: Proceedings of the IEEE intelligent vehicles symposium, IstanbulGoogle Scholar
  38. 38.
    Li L, Wang F-Y, Zhang Y (2007) Cooperative driving at lane closures. In: Proceedings of the IEEE intelligent vehicles symposium, IstanbulGoogle Scholar
  39. 39.
    Haruna T, Okada Y, Shigeno H (2007) A construction method of road-static network with vehicular ad-hoc networks. In: Proceedings of the IEEE workshop on vehicle-to-vehicle communications, IstanbulGoogle Scholar
  40. 40.
    Sheng W, Yang Q, Guo Y (2006) Experimental testbed and distributed algorithm for cooperative driving in VII simulation. In: Proceedings of the IEEE intelligent transportation systems conference, TorontoGoogle Scholar
  41. 41.
    Judaschke U (1994) Verfahren zur kollisionsfreien Führung und Koordination mobiler Transportsysteme. PhD thesis, Universität DortmundGoogle Scholar
  42. 42.
    Chiang Y-J, Klosowski J, Lee C, Mitchell J (1997) Geometric algorithms for conflict detection/resolution in air traffic management. In: Proceedings of the IEEE conference on decision and control, San DiegoGoogle Scholar
  43. 43.
    Zhou M (2007) A traffic data exchange protocol in vehicular ad-hoc network. In: Proceedings of the international workshop on intelligent transportation, HamburgGoogle Scholar
  44. 44.
    Khan MA, Bölöni L (2005) Convoy driving through ad-hoc coalition formation. In: Proceedings of the IEEE real time and embedded technology and applications symposium, San Francisco, pp 98–105Google Scholar
  45. 45.
    Hallé S, Chaib-draa B (2004) Collaborative driving system using teamwork for platoon formations. In: Proceedings of workshop on agents in traffic and transportation, New YorkGoogle Scholar
  46. 46.
    Batz T, Watson K, Beyerer J (2009) Recognition of dangerous situations within a cooperative group of vehicles. In: Proceedings of IEEE intelligent vehicles symposium, Xi’an, China, pp 907–912Google Scholar
  47. 47.
    Tan H-S, Huang J (2006) A low-order DGPS-based vehicle positioning system under urban environment. IEEE ASME Trans Mechatron 11(5):567–575CrossRefGoogle Scholar
  48. 48.
    Tan H-S, Huang J (2006) DGPS-based vehicle-to-vehicle cooperative collision warning: engineering feasibility viewpoints. IEEE Trans Intell Transp Syst 7(4):415–428CrossRefGoogle Scholar
  49. 49.
    Wan EA, Van Der Merwe R (2001) Chapter 7: the unscented kalman filter. In: Kalman filtering and neural networks. Wiley, New York, pp 221–280CrossRefGoogle Scholar
  50. 50.
    Caveney D (2007) Stochastic path prediction using the unscented transform with numerical integration. In: Proceedings of the 2007 IEEE intelligent transportation systems conference, Seattle, 30 Sept–3 Oct 2007Google Scholar
  51. 51.
    Kvasnica M, Grieder P, Baotić M (2004) Multi-parametric toolbox (MPT). http://control.ee.ethz.ch/~mpt/
  52. 52.
    Löfberg J (2004) YALMIP: a toolbox for modeling and optimization in MATLAB, http://control.ee.ethz.ch/~joloef/yalmip.php. In: Proceedings of the CACSD conference, Taipei, Taiwan
  53. 53.
    Miller R, Huang Q (2002) An adaptive peer-to-peer collision warning system. In: Proceedings of the IEEE vehicular technology conference, Birmingham, pp 317–321Google Scholar
  54. 54.
    van den Broek T, Ploeg J (2010) Collision warning system based on probability density functions. In: Proceedings of the International workshop on intelligent transportation, Hamburg, pp 141–147Google Scholar
  55. 55.
    Misener JA, Sengupta R, Krishnan H (2005) Cooperative collision warning: enabling crash avoidance with wireless technology. In: Proceedings of the world congress on intelligent transport systems and services, San FranciscoGoogle Scholar
  56. 56.
    Benmimoun A, Chen J, Suzuki T (2007) Design and practical evaluation of an intersection assistant in real world tests. In: Proceedings of the IEEE intelligent vehicles symposium, IstanbulGoogle Scholar
  57. 57.
    Chen J, Deutschle S, Fuerstenberg K (2007) Evaluation methods and results of the INTERSAFE intersection assistants. In: Proceedings of the IEEE intelligent vehicles symposium, Istanbul, pp 142–147Google Scholar
  58. 58.
    Onken R (1994) DAISY, an adaptive, knowledge-based driver monitoring and warning system. In: Proceedings of the vehicle navigation & information systems conference, Yokohama, pp 3–10Google Scholar
  59. 59.
    Ishida S, Gayko J (2004) Development, evaluation and introduction of a lane keeping assistance system. In: Proceedings of the IEEE intelligent vehicles symposium, Parma, pp 943–944Google Scholar
  60. 60.
    McCall J, Wipf D, Trivedi M, Rao B (2005) Lane change intent analysis using robust operators and sparse bayesian learning. In: IEEE/CVPR workshop on machine vision for intelligent vehicles, San DiegoGoogle Scholar
  61. 61.
    Zhang J, Roessler B (2009) Situation analysis and adaptive risk assessment for intersection safety systems in advanced assisted driving. In: Autonome mobile system, Karlsruhe, pp 249–258Google Scholar
  62. 62.
    ElBatt T, Goel S, Holland G, Krishnan H, Parikh J (2006) Cooperative collision warning using dedicated short range wireless communications. In: ACM VANET, Los AngelesGoogle Scholar
  63. 63.
    Morsink P, Hallouzi R, Dagli I, Cseh C, Schäfers L, Nelisse M, de Bruin D (2003) CarTALK 2000: development of a cooperative ADAS based on vehicle-to-vehicle communication. In: Proceedings of the world congress on intelligent transport systems and services, MadridGoogle Scholar
  64. 64.
    Girard AR, de Sousa JB, Misener JA, Hedrick JK (2001) A control architecture for integrated cooperative cruise control and collision warning systems. In: Proceedings of the IEEE conference on decision and control, OrlandoGoogle Scholar
  65. 65.
    Uno A, Sakaguchi T, Tsugawa S (1999) A merging control algorithm based on inter-vehicle communication. In: Proceedings of the IEEE intelligent transportation systems conference, Tokyo, pp 783–787Google Scholar
  66. 66.
    Bruns T, Trächtler A (2009) Intersection management: trajectory planning by means of dynamic programming. Automatisierungstechnik 57(5):253–261CrossRefGoogle Scholar
  67. 67.
    Murray R (2007) Recent research in cooperative control of multivehicle systems. ASME J Dyn Syst Meas Control 129:571–583CrossRefGoogle Scholar
  68. 68.
    Dimarogonas D, Kyriakopoulos K (2005) A feedback stabilization and collision avoidance scheme for multiple independent nonholonomic non-point agents. In: Proceedings of the 2005 IEEE international symposium on intelligent control limassol, Cyprus, pp 820–825Google Scholar
  69. 69.
    Hillenbrand J, Spieker A, Kroschel K (2006) A multilevel collision mitigation approach – its situation assessment, decision making, and performance tradeoffs. IEEE Trans Intell Transp Syst 7(4):528–540CrossRefGoogle Scholar
  70. 70.
    Isermann R, Schorn M, Stählin U (2008) Anticollision system PRORETA with automatic braking and steering. Veh Syst Dyn 46:683–694CrossRefGoogle Scholar
  71. 71.
    Schmidt C, Oechsle F, Branz W (2006) Research on trajectory planning in emergency situations with multiple objects. In: Proceedings of the IEEE intelligent transportation systems conference, Toronto, pp 988–992Google Scholar
  72. 72.
    Lachner R, Breitner M, Pesch HJ (2000) Real-time collision avoidance: differential game, numerical solution, and synthesis of strategies. In: Filar J, Gaitsgory V, Mizukami K (eds) Advances in dynamic games and applications. Birkhäuser, BostonGoogle Scholar
  73. 73.
    Lozano-Pérez T (1983) Spatial planning: a configuration space approach. IEEE Trans Comput 32(2):108–120CrossRefMathSciNetMATHGoogle Scholar
  74. 74.
    Choset H, Lynch K, Hutchinson S, Kantor G, Burgard W, Kavraki L, Thrun S (2005) Principles of robot motion. MIT Press, CambridgeMATHGoogle Scholar
  75. 75.
    LaValle S (2006) Planning algorithms. Cambridge University Press, Cambridge, UKCrossRefMATHGoogle Scholar
  76. 76.
    Laumond J-P, Sekhavat S, Lamiraux F (1998) Guidelines in nonholonomic motion planning for mobile robots. In: Laumond J-P (ed) Robot motion planning and control. Springer, New YorkCrossRefGoogle Scholar
  77. 77.
    LaValle S, Kuffner J (1999) Randomized kinodynamic planning. In: Proceedings of the IEEE conference on robotics and automation, Detroit, pp 473–479Google Scholar
  78. 78.
    Petti S, Fraichard T (2005) Safe motion planning in dynamic environments. In: Proceedings of the IEEE/RSJ conference on intelligent robots and systems, Edmonton, pp 3726–3731Google Scholar
  79. 79.
    Hesse T, Sattel T (2007) An approach to integrate vehicle dynamics in motion planning for advanced driver assistance systems. In: Proceedings of the IEEE intelligent vehicles symposium, IstanbulGoogle Scholar
  80. 80.
    Latombe J-C (1991) Robot motion planning. Kluwer, Boston, MACrossRefGoogle Scholar
  81. 81.
    Sánchez G, Latombe J-C (2002) On delaying collision checking in PRM planning: application to multi-robot coordination. Int J Robot Res 21(1):5–26CrossRefGoogle Scholar
  82. 82.
    Clark C, Rock S, Latombe J-C (2003) Motion planning for multiple mobile robots using dynamic networks. In: Proceedings of the IEEE conference on robotics and automation, Taipei, pp 4222–4227Google Scholar
  83. 83.
    Kant K, Zucker S (1986) Toward efficient trajectory planning: the path-velocity decomposition. Int J Robot Res 5(3):72–89CrossRefGoogle Scholar
  84. 84.
    O´Donnell P, Lozano-Pérez T (1989) Deadlock-free and collision-free coordination of two robot manipulators. In: Proceedings of the IEEE conference on robotics and automation, ScottsdaleGoogle Scholar
  85. 85.
    Leroy S, Laumond J-P, Siméon T (1999) Multiple path coordination for mobile robots: a geometric algorithm. In: Proceedings of the international joint conference on artificial intelligence, StockholmGoogle Scholar
  86. 86.
    Ghrist R, LaValle S (2006) Nonpositive curvature and pareto optimal coordination of robots. SIAM J Control Optim 45(5):1697–1713CrossRefMathSciNetMATHGoogle Scholar
  87. 87.
    Peng J, Akella S (2005) Coordinating multiple robots with kinodynamic constraints along specified paths. Int J Robot Res 24(4):295–310CrossRefGoogle Scholar
  88. 88.
    Alami R, Fleury S, Herrb M, Ingrand F, Robert F (1998) Multi-robot cooperation in the MARTHA project. IEEE Rob Autom Mag 5(1):36–47CrossRefGoogle Scholar
  89. 89.
    Švestka P, Overmars M (1998) Coordinated path planning for multiple robots. Rob Autom Syst 23:125–152CrossRefGoogle Scholar
  90. 90.
    LaValle S, Hutchinson S (1998) Optimal motion planning for multiple robots having independent goals. IEEE Trans Robot Automation 14(6):912–925CrossRefGoogle Scholar
  91. 91.
    Erdmann M, Lozano-Pérez T (1987) On multiple moving objects. Algorithmica 2:477–521CrossRefMathSciNetMATHGoogle Scholar
  92. 92.
    Freund E, Hoyer H (1988) Real-time pathfinding in multirobot systems including obstacle avoidance. Int J Robot Res 7(1):42–70CrossRefGoogle Scholar
  93. 93.
    Warren CW (1990) Multiple robot path coordination using artificial potential fields. In: Proceedings of the IEEE conference on robotics and automation, CincinnatiGoogle Scholar
  94. 94.
    Azarm K, Schmidt G (1996) A decentralized approach for the conflict-free motion of multiple mobile robots. In: Proceedings of the IEEE/RSJ conference on intelligent robots and systems, OsakaGoogle Scholar
  95. 95.
    Bekris K, Tsianos K, Kavraki L (2007) A decentralized planner that guarantees the safety of communicating vehicles with complex dynamics that replan online. In: Proceedings of the IEEE/RSJ conference on intelligent robots and systems, San Diego, pp 3784–3790Google Scholar
  96. 96.
    Bennewitz M, Burgard W, Thrun S (2001) Optimizing schedules for prioritized path planning of multi-robot systems. In: Proceedings of the IEEE conference on robotics and automation, SeoulGoogle Scholar
  97. 97.
    van den Berg J, Overmars M (2005) Prioritized motion planning for multiple robots. In: Proceedings of the IEEE/RSJ conference on intelligent robots and systems, EdmontonGoogle Scholar
  98. 98.
    Berger JO (1993) Statistical decision theory and Bayesian analysis, Springer series in statistics. Springer, New YorkGoogle Scholar
  99. 99.
    Hart P, Nilsson N, Raphael B (1968) A formal basis for the heuristic determination of minimum cost paths. IEEE Trans Syst Sci Cybern 4(2):100–107CrossRefGoogle Scholar
  100. 100.
    Russell S, Norvig P (2003) Artificial intelligence: a modern approach. Prentice Hall, New YorkGoogle Scholar
  101. 101.
    Frese C, Beyerer J (2010) Planning cooperative motions of cognitive automobiles using tree search algorithms. In: Dillmann R, Beyerer J, Hanebeck UD, Schultz T (eds) KI 2010: advances in artificial intelligence. Lecture notes in artificial intelligence, vol 6359. Springer, Heidelberg, pp 91–98Google Scholar
  102. 102.
    Schouwenaars T, De Moor B, Feron E, How J (2001) Mixed integer programming for multi-vehicle path planning. In: Proceedings of the European control conference, Porto, pp 2603–2608Google Scholar
  103. 103.
    Borrelli F, Subramanian D, Raghunathan A, Biegler L (2006) MILP and NLP techniques for centralized trajectory planning of multiple unmanned air vehicles. In: Proceedings of the American control conference, MinneapolisGoogle Scholar
  104. 104.
    Richards A, How J (2002) Aircraft trajectory planning with collision avoidance using mixed integer linear programming. In: Proceedings American control conference, AnchorageGoogle Scholar
  105. 105.
    Sierksma G (1996) Linear and integer programming: theory and practice. Dekker, New YorkMATHGoogle Scholar
  106. 106.
    Earl M, D’Andrea R (2007) Multi-vehicle cooperative control using mixed integer linear programming. In: Shamma J (ed) Cooperative control of distributed multi-agent systems. Wiley, New York, pp 233–259Google Scholar
  107. 107.
    Richards A, How J (2004) Decentralized model predictive control of cooperating UAVs. In: Proceedings of the IEEE conference on decision and control, AtlantisGoogle Scholar
  108. 108.
    Niedringhaus W (1995) Stream option manager (SOM): automated integration of aircraft separation, merging, stream management, and other air traffic control functions. IEEE Trans Syst Man Cybern 25(9):1269–1280CrossRefGoogle Scholar
  109. 109.
    İnalhan G, Stipanović D, Tomlin C (2002) Decentralized optimization, with application to multiple aircraft coordination. In: Proceedings of the IEEE conference on decision and control, Las VegasGoogle Scholar
  110. 110.
    Quinlan S, Khatib O (1993) Elastic bands: connecting path planning and control. In: Proceedings of the IEEE conference on robotics and automation, AtlantaGoogle Scholar
  111. 111.
    Brock O (1999) Generating robot motion: the integration of planning and execution. PhD thesis, Stanford UniversityGoogle Scholar
  112. 112.
    Khatib M, Jaouni H, Chatila R, Laumond J-P (1997) Dynamic path modification for car-like nonholonomic mobile robots. In: Proceedings of the IEEE conference on robotics and automation, Albuquerque, pp 2920–2925Google Scholar
  113. 113.
    Hilgert J, Hirsch K, Bertram T, Hiller M (2003) Emergency path planning for autonomous vehicles using elastic band theory. In: Proceedings of the IEEE/ASME conference on advanced intelligent mechatronics, KobeGoogle Scholar
  114. 114.
    Brandt T, Sattel T, Wallaschek J (2005) On automatic collision avoidance systems. In: Proceedings of SAE world congress, DetroitCrossRefGoogle Scholar
  115. 115.
    Gehrig S, Stein F (2007) Collision avoidance for vehicle-following systems. IEEE Trans Intell Transp Syst 8(2):233–244CrossRefGoogle Scholar
  116. 116.
    Frese C, Batz T, Beyerer J (2008) Cooperative behavior of groups of cognitive automobiles based on a common relevant picture. Automatisierungstechnik 56(12):644–652CrossRefGoogle Scholar
  117. 117.
    Thorpe C, Jochem T, Pomerleau D (1997) The 1997 automated highway free agent demonstration. In: Proceedings of the IEEE intelligent transportation systems conference, Pittsburgh, pp 496–501Google Scholar
  118. 118.
    Demmel S, Gruyer D, Rakotonirainy A (2010) V2V/V2I augmented maps: state-of-the-art and contribution to real-time crash risk assessment. In: Proceedings of the 20th Canadian multidisciplinary road safety conference, Niagara Falls, OntarioGoogle Scholar
  119. 119.
    Jensen FV (2001) Bayesian networks and decision graphs. Springer, New YorkCrossRefMATHGoogle Scholar
  120. 120.
    Forbes J, Huang T, Kanazawa K, Russell S (1995) The BATmobile: towards a bayesian automated taxi. In: Proceedings of the international joint conference on artificial intelligence, Montreal, pp 1878–1885Google Scholar
  121. 121.
    Fraichard T, Mermond R (1998) Path planning with uncertainty for car-like robots. In: Proceedings IEEE conference on robotics and automation, Leuven, pp 27–32Google Scholar
  122. 122.
    Gonzalez JP, Stentz A (2005) Planning with uncertainty in position: an optimal and efficient planner. In: Proceedings of the IEEE/RSJ conference on intelligent robots and systems, Edmonton, pp 2435–2442Google Scholar
  123. 123.
    Melchior N, Simmons R (2007) Particle RRT for path planning with uncertainty. In: Proceedings of the IEEE conference on robotics and automation, Roma, pp 1617–1624Google Scholar
  124. 124.
    Toussaint M, Goerick C (2007) Probabilistic inference for structured planning in robotics. In: Proceedings of the IEEE/RSJ conference on intelligent robots and systems, San DiegoGoogle Scholar
  125. 125.
    Lambert A, Bouaziz S, Reynaud R (2003) Shortest safe path planning for vehicles. In: Proceedings of the IEEE intelligent vehicles symposium, Columbus, OHGoogle Scholar
  126. 126.
    Gonzalez JP, Stentz A (2007) Planning with uncertainty in position using high-resolution maps. In: Proceedings of the IEEE conference on robotics and automation, Roma, pp 1015–1022Google Scholar
  127. 127.
    Broadhurst A, Baker S, Kanade T (2005) Monte Carlo road safety reasoning. In: Proceedings of the IEEE intelligent vehicles symposium, Las Vegas, pp 319–324Google Scholar
  128. 128.
    Althoff M, Althoff D, Wollherr D, Buss M (2010) Safety verification of autonomous vehicles for coordinated evasive maneuvers. In: Proceedings of the IEEE intelligent vehicles symposium, San Diego, pp 1078–1083Google Scholar
  129. 129.
    Bekris K, Kavraki L (2007) Greedy but safe replanning under kinodynamic constraints. In: Proceedings of the IEEE conference on robotics and automation, Rome, pp 704–710Google Scholar
  130. 130.
    Bekris K, Tsianos K, Kavraki L (2007) A distributed protocol for safe real-time planning of communicating vehicles with second-order dynamics. In: Proceedings of the conference on robot communication and coordination, AthensGoogle Scholar
  131. 131.
    Olfati-Saber R, Fax JA, Murray RM (2007) Consensus and cooperation in networked multi-agent systems. Proc IEEE 95(1):215–233CrossRefGoogle Scholar
  132. 132.
    Georgiev D, Kabamba P, Tilbury D (2008) A new model for team optimization: the effects of uncertainty on interaction. IEEE Trans Syst Man Cybern A 38(6):1234–1247CrossRefGoogle Scholar
  133. 133.
    Garg D, Narahari Y (2008) Mechanism design for single leader Stackelberg problems and application to procurement auction design. IEEE Trans Autom Sci Eng 5(3):377CrossRefGoogle Scholar
  134. 134.
    Kenney J (2010) Standards and regulations. In: Hartenstein H, Laberteaux K (eds) VANET: vehicular applications and inter-networking technologies, Intelligent transportation systems. Wiley, Chichester, pp 365–429CrossRefGoogle Scholar
  135. 135.
    Stübing H, Bechler M, Heussner D, May T, Radusch I, Rechner H, Vogel P (2010) simTD: a car-to-X system architecture for field operational tests. IEEE Commun Mag 48(5):148–154CrossRefGoogle Scholar
  136. 136.
    US Department of Transportation (2011) Connected vehicle technology challenge. http://connectedvehicle.challenge.gov/
  137. 137.
    Grand cooperative driving challenge. http://www.gcdc.net/
  138. 138.
    Urmson C, Whittaker WR, Harbaugh S, Clark M, Koon P (2006) Testing driver skill for high-speed autonomous vehicles. Computer 39(12):48–51CrossRefGoogle Scholar
  139. 139.
    Christen F, Sandkühler D, Benmimoun A, Breuer K (2004) Verwendung des Verkehrsflusssimulationswerkzeugs PELOPS mit HiL-Funktionalität bei der Entwicklung von Fahrerassistenzsystemen. In: VDI Kongress Berechnung und Simulation im FahrzeugbauGoogle Scholar
  140. 140.
    Jansson J, Johansson J, Gustafsson F (2002) Decision making for collision avoidance systems. In: Society of automotive engineers technical paperGoogle Scholar
  141. 141.
    Winner H, Wolf G (2009) Quo vadis, FAS? In: Winner H, Hakuli S, Wolf G (eds) Handbuch Fahrerassistenzsysteme – Grundlagen, Komponenten und Systeme für aktive Sicherheit und Komfort, Vieweg + Teubner, pp 664–673Google Scholar
  142. 142.
    Wahl R, Tørset T, Vaa T (2007) Large scale introduction of automated transport: which legal and administrative barriers are present? In: Proceedings of the world congress on intelligent transport systems and services, BeijingGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Kym Watson
    • 1
  • Christian Frese
    • 2
  • Thomas Batz
    • 1
  • Jürgen Beyerer
    • 2
    • 3
  1. 1.Department Information ManagementFraunhofer Institute of Optronics, System Technologies and Image Exploitation IOSBKarlsruheGermany
  2. 2.Institute for Anthropomatics, Vision and Fusion LaboratoryKarlsruhe Institute of TechnologyKarlsruheGermany
  3. 3.Fraunhofer Institute of Optronics, System Technologies and Image Exploitation IOSBKarlsruheGermany