Skip to main content

Dynamic Environment Sensing Using an Intelligent Vehicle

  • Reference work entry
  • First Online:
Book cover Transportation Technologies for Sustainability

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 749.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Classification:

Annotating a data segment or an object by a class label.

Contextual map:

A map containing high-level knowledge beyond geometry, such as object, class, and motion.

Data alignment:

Integrating the instantaneous measurements from sensors’ coordinate system(s) to a global coordinate system.

Dynamic mapping:

A mapping technology that uses a dynamic procedure or generates a map of a dynamic environment.

Multi-laser sensing system:

A sensor system that makes collaborative use of a number of laser range scanners.

Range image:

A 2D image where the value of each pixel is a range distance, with the pixel index corresponding to range angle and scanning sequence, so that a 3D coordinate can be retrieved for each pixel of the range image.

Scene understanding:

Converting from low-level knowledge to high-level knowledge of an environment.

Segmentation:

Making partitions on a data set, where in each partition cell (i.e., segment), data has the property of certain homogeneity.

Sensor calibration:

Finding a set of parameters that describes internal or external sensor geometry.

Bibliography

  1. International Society of Photogrammetry and Remote Sensing. http://www.isprs.org/

  2. Collins R, Hanson A, Riseman E (1994) Site model acquisition under the UMass RADIUS project. In: Proceedings of arpa image understanding workshop, Monterey, CA, pp 351–358

    Google Scholar 

  3. Gruen A (1998) TOBAGO – a semi-automated approach for the generation of 3-D building models. ISPRS J Photogramm Remote Sens 53(2):108–118

    Article  Google Scholar 

  4. Forstner W (1999) 3D-city models: automatic and semiautomatic acquisition methods. In: Proceedings photogrammetric week, University of Stuttgart, Institute for photogrammetry, pp 291–303

    Google Scholar 

  5. Shiode N (2001) 3D urban model: recent developments in the digital modeling of urban environments in three-dimensions. GeoJournal 52(3):263–269

    Article  Google Scholar 

  6. Ellum C, El-Sheimy N (2000) The development of a backpack mobile mapping system. Int Arch Photogramm Remote Sensing XXXII(B2):184–191, Amsterdam

    Google Scholar 

  7. He G, Orvets G (2000) Capturing road network data using mobile mapping technology. Int Arch Photogramm Remote Sensing XXXIII(B2):272–277, Amsterdam

    Google Scholar 

  8. Silva JFC, Camargo PO, Oliveira RA (2000) A street map built by a mobile mapping system. Int Arch Photogramm Remote Sensing XXXIII(B2):510–517, Amsterdam

    Google Scholar 

  9. El-Sheimy N (2000) Mobile multi-sensor systems: the new trend in mapping and GIS applications. IAG J Geodesy, vol. 121, Geodesy beyond 2000: the challenges of the first decade. Springer, Berlin/Heidelberg, pp 319–324

    Google Scholar 

  10. Li R (1997) Mobile mapping: an emerging technology for spatial data acquisition. Photogramm Eng Remote Sens 63(9):1085–1092

    Google Scholar 

  11. Früh C, Zakhor A (2004) An automated method for large-scale, ground-based city model acquisition. Int J Comput Vis 60(1):5–24

    Article  Google Scholar 

  12. Ikeuchi K, Sakauchi M, Kawasaki H, Sato I (2004) Constructing virtual cities by using panoramic images. Int J Comput Vis 53(3):237–247

    Article  Google Scholar 

  13. Zhao H, Shibasaki R (2003) Special issue on computer vision system: reconstructing textured CAD model of urban environment using vehicle-borne laser range scanners and line cameras. Mach Vis Appl 14(1):35–41

    Article  Google Scholar 

  14. Google Earth (2004) http://earth.google.com

  15. Microsoft Virtual Earth (2006) http://www.microsoft.com/virtualearth

  16. Google StreetView (2007) http://maps.google.com/help/maps/streetview

  17. StreetMapper (2007) http://www.streetmapper.net

  18. City Grid (2006) http://www.cybercity.tv

  19. Cyber City (2007) http://www.cybercity.tv

  20. Hu J, You S, Neumann U (2003) Approaches to large-scale urban modeling. IEEE Comput Graph Appl 23(6):62–69

    Article  Google Scholar 

  21. Thrun S (2002) Robotic mapping: a survey. CMU-CS-02-11

    Google Scholar 

  22. DARPA (2004) DARPA grand challenge rulebook. http://www.darpa.mil/grandchallenge05/Rules_8oct04.pdf

  23. DARPA (2006) DARPA grand challenge rulebook. http://www.darpa.mil/grandchallenge/docs/Urban_Challenge_Rules_121106.pdf

  24. Journal of Field Robotics: Special issue on the 2007 DARPA urban challenge, Part I 25(8)

    Google Scholar 

  25. Journal of Field Robotics: Special issue on the 2007 DARPA urban challenge, Part II 25(9)

    Google Scholar 

  26. Nuchter A, Lingemann K, Hertzberg J, Surmann H (2007) 6D SLAM – 3D mapping outdoor environments. J Field Robot 24(8/9):699–722

    Article  MATH  Google Scholar 

  27. Zhao H, Shibasaki R (2003) A vehicle-borne urban 3D acquisition system using single-row laser range scanners. IEEE Trans SMC Part B: Cybern 33–4:658–666

    Google Scholar 

  28. Allen P, Atamos I, Gueorguiev A, Gold E, Blaer P (2001) AVENUE: automated site modeling in urban environments. In: Proceedings of the 3rd international conference on 3D digital imaging and modeling, Quebec City, pp 357–364

    Chapter  Google Scholar 

  29. Georgiev A, Allen PK (2004) Localization methods for a mobile robot in urban environments. IEEE Trans Robot Automat (TRO) 20(5):851–864

    Article  Google Scholar 

  30. Hahnel D, Burgard W, Fox D, Thrun S (2003) An efficient FastSLAM algorithm for generating maps of large-scale cyclic environments from raw laser range measurements. In: Proceedings of IEEE/RSJ international conference on intelligent robots and systems, Las Vegas, pp 206–211

    Google Scholar 

  31. Wang CC (2004) Simultaneous localization, mapping and moving object tracking. PhD dissertation, Carnegie Mellon University, CMU-RI-TR-04-23

    Google Scholar 

  32. Vu T, Aycard O, Appenrodt N (2007) Online localization and mapping with moving object tracking in dynamic outdoor environment. In: Proceedings IEEE intelligent vehicle symposium, Istanbul, pp 190–195

    Google Scholar 

  33. Weiss T, Schiele B, Dietmayer K (2007) Robust driving path detection in urban and highway scenarios using a laser scanner and online occupancy grids. In: Proceedings of the IEEE intelligent vehicle symposium, Istanbul, pp 184–189

    Google Scholar 

  34. Zhao H, Chiba M, Shibasaki R, Shao X, Cui J, Zha H (2008) SLAM in a dynamic large outdoor environment using a laser scanner. In: Proceedings of the IEEE international conference on robotics and automation (ICRA), Pasadena, CA, pp 1455–1462

    Google Scholar 

  35. Velodyne HDL-64E (2007) http://www.velodyne.com/lidar/products/overview.aspx

  36. SICK LMS2** (2001) http://www.sick.com

  37. Durrant-Whyte H, Bailey T (2006) Simultaneous localization and mapping: Part I. IEEE Rob Autom Mag 13(2):99–108

    Article  Google Scholar 

  38. Bailey T, Durrant-Whyte H (2006) Simultaneous localization and mapping: Part II. IEEE Rob Autom Mag 13(3):108–117

    Article  Google Scholar 

  39. Streller D, Dietmayer K (2004) Object tracking and classification using a multiple hypothesis approach. In: Proceedings of the IEEE intelligent vehicles symposium, Parma, pp 808–812

    Google Scholar 

  40. Fayad F, Cherfaoui V (2007) Tracking objects using a laser scanner in driving situation based on modeling target shape. In: Proceedings of the IEEE intelligent vehicle symposium, Istanbul, pp 44–49

    Google Scholar 

  41. Zhao H, Liu Y, Zhu X, Zhao Y, Zha H (2010) Scene understanding in a large dynamic environment through a laser-based sensing.In: IEEE international conference on robotics and automation, Anchorage, pp 127–133

    Google Scholar 

  42. Zhao H, Xiong L, Jiao Z, Cui J, Zha H (2009) Sensor alignment towards an omni-directional measurement using an intelligent vehicle. In: Proceedings of the IEEE intelligent vehicle symposium, Kobe, pp 292–298

    Google Scholar 

  43. Zhao H, Shibasaki R (2001) High accurate positioning and mapping in urban area using laser range scanner. In: Proceedings of IEEE intelligent vehicles symposium, Tokyo, pp 125–132

    Google Scholar 

  44. Zhao H, Chiba M, Shibasaki R, Shao X, Cui J, Zha H (2009) A laser scanner based approach towards driving safety and traffic data collection. IEEE Trans Intell Transport Syst 10(3):534–546

    Article  Google Scholar 

  45. Cheok GS, Leigh S, Rukhin A (2002) Calibration experiments of a laser scanners. NISTIR 6922:121

    Google Scholar 

  46. Santala J, Joala V (2003) On the calibration of a ground-based laser scanner. TS12.4, FIG working week

    Google Scholar 

  47. Mahlisch M, Hering R, Ritter W, Dietmayer K (2006) Heterogeneous fusion of video, Lidar, ESP data for automotive ACC vehicle tracking. In: Proceedings of IEEE international conference on multisensor fusion and integration for intelligent systems, Heidelberg, pp 139–144

    Google Scholar 

  48. Rodriguez F, Sergio A, Fremont V, Bonnifait P (2008) Extrinsic calibration between a multi-layer LIDAR and a camera. In: Proceedings of IEEE international conference on multisensor fusion and integration for intelligent systems, Seoul, pp 214–219

    Google Scholar 

  49. Zhao H, Chen Y, Shibasaki R (2007) An efficient extrinsic calibration of a multiple laser scanners and cameras’ sensor system on a mobile platform. In: IEEE intelligent vehicles symposium, Istanbul, pp 422–427

    Google Scholar 

  50. Gao C, Spletzer JR (2010) On-line calibration of multiple LIDARs on a mobile vehicle platform. In: Proceedings of IEEE international conference on robotics and automation, Anchorage, pp 279–284

    Google Scholar 

  51. Besl PJ, McKay ND (1992) A method for registration of 3-D shape. IEEE Trans Pattern Anal Mach Intell 14:239–256

    Article  Google Scholar 

  52. Chen Y, Medion G (1992) Object modeling by registration of multiple range images. Image Vis Comput 10(3):145–155

    Article  Google Scholar 

  53. Zhang Z (1994) Iterative point matching for registration of a free-from curves and surfaces. Int J Comput Vis 13:119–152

    Article  Google Scholar 

  54. Hahnel D, Burgard W, Thrun S (2003) Learning compact 3d models of indoor and outdoor environments with a mobile robot. Rob Autom Syst 44:15–27

    Article  Google Scholar 

  55. Althaus P, Christensen H (2003) Behavior coordination in structured environments. Adv Robot 17(7):657–674

    Article  Google Scholar 

  56. Mendes A, Nunes U (2004) Situation-based multi-target detection and tracking with laserscanner in outdoor semi-structured environment. In: Proceedings IEEE/RSJ international conference on intelligent robots and systems, Sendai

    Book  Google Scholar 

  57. Posner I, Cummins M, Newman P (2008) Online generation of scene descriptions in urban environments. Rob Autom Syst 56(11):901–914

    Article  Google Scholar 

  58. Douillard B (2009) Vision and laser based classification in urban environments. PhD thesis, University of Sydney

    Google Scholar 

  59. Nuchter A, Lingemann K, Hertzberg J, Surmann H (2009) 6D SLAM – 3D mapping outdoor environments. J Field Robot 24(8–9):699–722

    Article  MATH  Google Scholar 

  60. Martinez-Mozos O, Stachniss C, Burgard W (2005) Supervised learning of places from range data using AdaBoost. In: IEEE international conference on robotics and automation (ICRA), Barcelona, pp 1742–1747

    Google Scholar 

  61. Triebel R, Kersting K, Burgard W (2006) Robust 3D scan point classification using associative Markov networks. In: IEEE international conference on robotics and automation (ICRA), Orlando, FL

    Google Scholar 

  62. Douillard B, Fox D, Ramos FT (2008) Laser and vision based outdoor object mapping. In: Proceedings of robotics: science and systems, Zurich

    Google Scholar 

  63. Posner I, Cummins M, Newman P (2009) A generative framework for fast urban labeling using spatial and temporal context. Auton Robot 26(2–3):153–170

    Article  Google Scholar 

  64. Hoover A, Jean-Baptiste G, Jiang X, Flynn PJ, Bunke H, Goldgof D, Bowyer K (1996) A comparison of range image segmentation algorithms. IEEE Trans Pattern Anal Mach Intell 18(7):673–689

    Article  Google Scholar 

  65. Katsoulas D, Bastidas CC, Kosmopoulos D (2008) Superquadic segmentation in range image via fusion of region and boundary information. IEEE Trans Pattern Anal Mach Intell 20(5):781–795, 2008

    Article  Google Scholar 

  66. Weingarten J, Siegwart R (2005) EKF-based 3D SLAM for structured environment. In: IEEE/RSJ international conference on intelligent robots and systems, Edmonton, Alberta, pp 2089–2094

    Google Scholar 

  67. Han F, Tu Z, Zhu SC (2004) Range image segmentation by an effective jump-diffusion method. IEEE Trans Pattern Anal Mach Intell 26(9):1138–1153

    Article  Google Scholar 

  68. Borenstein E, Ullman S (2008) Combined top-down/bottom-up segmentation. IEEE Trans Pattern Anal Mach Intell 30(12):2109–2125

    Article  Google Scholar 

  69. Malisiewicz T, Efros AA (2008) Recognition by association via learning per-exemplar distances. In: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR), Anchorage

    Google Scholar 

  70. Porway J, Wange K, Zhu SC (2008) A hierarchical and contextual model for aerial image understanding. In: Proceedings of the IEEE international conference on computer vision and pattern recognition (CVPR), Anchorage, pp 1–8

    Google Scholar 

  71. Tu Z, Chen X, Yuille A, Zhu SC (2005) Image parsing: unifying segmentation, detection and recognition. Int J Comput Vis 63(2):113–140

    Article  Google Scholar 

  72. Golovinskiy A, Kim VG, Funkhouser T (2009) Shape-based recognition of 3D point clouds in urban environments. In: IEEE international conference on computer vision, Kyoto, pp 2154–2161

    Google Scholar 

  73. Shi J, Malik J (2000) Normalized cuts and image segmentation. IEEE Trans Pattern Anal Mach Intell 22:888–905

    Article  Google Scholar 

  74. Felzenszwalb PF, Huttenlocher DP (2004) Efficient graph-based image segmentation. Int J Comput Vis 59:167–181

    Article  Google Scholar 

  75. Jiang X, Bunke H (1994) Fast segmentation of range images into planar regions by scan line grouping. Mach Vis Appl 7:115–122

    Article  Google Scholar 

  76. Rosin PL, West GAW (1995) Nonparametric segmentation of curves into various representations. IEEE Trans Pattern Anal Mach Intell 17:1140–1153. http://users.cs.cf.ac.uk/Paul.Rosin

  77. Chang CC, Lin CJ (2001) LIBSVM: a library for support vector machines. http://www.csie.ntu.edu.tw/∼cjlin/libsvm

  78. PKU Omni Smart Sensing – POSS (2010) http://www.poss.pku.edu.cn

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this entry

Cite this entry

Zhao, H., Xiong, L., Liu, Y., Zhu, X., Zhao, Y., Zha, H. (2013). Dynamic Environment Sensing Using an Intelligent Vehicle . In: Ehsani, M., Wang, FY., Brosch, G.L. (eds) Transportation Technologies for Sustainability. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5844-9_482

Download citation

Publish with us

Policies and ethics