Skip to main content

Neurotoxic Effects, Mechanisms, and Outcome of 192-IgG Saporin

  • Reference work entry
  • First Online:
Handbook of Neurotoxicity

Abstract

The first type-selective anti-neuronal active in vivo immunotoxin is 192 IgG-saporin. 192 IgG-saporin selectively destroys cholinergic neurons of basal forebrain that provide cholinergic input to the hippocampus, entire cortical mantle, amygdala, and olfactory bulb. Immunotoxic lesions by 192 IgG-saporin represent a valid animal model of Alzheimer’s disease, given the degeneration of basal cholinergic system present in this pathology.

Selective lesioning of cholinergic innervation by means of intracerebroventricular (i.c.v.) or intraparenchymal (i.pr.) 192 IgG-saporin is able to interfere with experience-dependent plasticity. A number of studies have demonstrated alteration of several structural and biochemical parameters related with neuroplasticity (dendritic spines and branching of pyramidal neurons, adult neurogenesis, levels of neurotrophic factors) in both cortical mantle and hippocampus.

Furthermore, lesions of the cholinergic basal forebrain affect cognitive functions, such as learning, memory, and attention, as well as sleep-waking cycle. The effects of selective immunotoxic lesions have been examined in a variety of behavioral paradigms of learning and memory. The general framework has to take into account the route of injection (i.c.v. or i.pr.), lesion extent, age of lesioning, and kind of behavior analyzed. Namely, cholinergic depletion can elicit specific learning and memory impairments as well as deficits in attentional and discriminative abilities. However, 192 IgG-saporin lesions result in overt behavioral deficits only using high demanding tasks and following high-grade CBF lesions, indicating that the relationship between CBF lesion extent and cognitive impairment is a threshold relationship in which a high degree of neuronal loss can be tolerated without detectable consequences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 549.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ACh:

Acetylcholine

AChE:

Acetylcholine esterase

AD:

Alzheimer’s disease

AF64A:

Aziridinium ion of ethylcholine mustard

AMPA:

Aminomethylphosphonate

APP:

Amyloid precursor protein

BDNF:

Brain-derived neurotrophic factor

CBF:

Cholinergic basal forebrain

ChAT:

Choline acetyltransferase

DBBv:

Diagonal band of Broca

DMTP:

Delayed matching to position

DMTS:

Delayed matching to sample

DNMTP:

Delayed nonmatching to position

GABA:

Gamma-aminobutyric acid

HAChT:

High-affinity choline transport

i.c.v.:

Intracerebroventricular

i.pr.:

Intraparenchymal

MS:

Medial septal nucleus

MWM:

Morris Water Maze

NBM:

Nucleus basalis magnocellularis

NGF:

Nerve growth factor

NMDA:

N-methyl-d-aspartate

OF:

Open field

p75:

p75NGFFR, nerve growth factor receptor

PA:

Passive avoidance

RAM:

Radial arm maze

RIPs:

Ribosome-inactivating proteins

SI:

Substantia innominata

References

  • Alvarez, V. A., & Sabatini, B. L. (2007). Anatomical and physiological plasticity of dendritic spines. Annual Review of Neuroscience, 30, 79–97.

    CAS  PubMed  Google Scholar 

  • Angelucci, F., Gelfo, F., De Bartolo, P., Caltagirone, C., & Petrosini, L. (2011). BDNF concentrations are decreased in serum and parietal cortex in immunotoxin 192 IgG-Saporin rat model of cholinergic degeneration. Neurochemistry International, 59, 1–4.

    CAS  PubMed  Google Scholar 

  • Antonini, V., Prezzavento, O., Coradazzi, M., Marrazzo, A., Ronsisvalle, S., Arena, E., & Leanza, G. (2009). Anti-amnesic properties of (+/−)-PPCC, a novel sigma receptor ligand, on cognitive dysfunction induced by selective cholinergic lesion in rats. Journal of Neurochemistry, 109, 744–754.

    CAS  PubMed  Google Scholar 

  • Arellano, J. I., Espinosa, A., Fairèn, A., Yuste, R., & DeFelipe, J. (2007). Non-synaptic dendritic spines in neocortex. Neuroscience, 145, 464–469.

    CAS  PubMed  Google Scholar 

  • Baskerville, K. A., Schweitzer, J. B., & Herron, P. (1997). Effects of cholinergic depletion on experience-dependent plasticity in the cortex of the rat. Neuroscience, 80, 1159–1169.

    CAS  PubMed  Google Scholar 

  • Baxter, M. G., & Chiba, A. A. (1999). Cognitive functions of the basal forebrain. Current Opinion in Neurobiology, 9, 178–183.

    CAS  PubMed  Google Scholar 

  • Baxter, M. G., Bucci, D. J., Gorman, L. K., Wiley, R. G., & Gallagher, M. (1995). Selective immunotoxic lesions of basal forebrain cholinergic cells: Effects on learning and memory in rats. Behavioral Neuroscience, 109, 714–722.

    CAS  PubMed  Google Scholar 

  • Baxter, M. G., Bucci, D. J., Sobel, T. J., Williams, M. J., Gorman, L. K., & Gallagher, M. (1996). Intact spatial learning following lesions of basal forebrain cholinergic neurons. Neuroreport, 31, 1417–1420.

    Google Scholar 

  • Berger-Sweeney, J. (1998). The effect of neonatal basal forebrain lesions on cognition: Towards understanding the developmental role of the cholinergic basal forebrain. Internal Journal of Developmental Neuroscience, 16, 603–612.

    CAS  Google Scholar 

  • Berger-Sweeney, J., Hechers, S., Mesulam, M. M., Wiley, R. G., Lappi, D. A., & Sharma, M. (1994). Differential effects on spatial navigation of immunotoxin-induced cholinergic lesions of the medial septal area and nucleus basalis. Journal of Neuroscience, 14, 4507–4519.

    CAS  PubMed  Google Scholar 

  • Book, A. A., Wiley, R. G., & Schweitzer, J. B. (1994). 192 IgG-saporin: I. Specific lethality for cholinergic neurons in the basal forebrain of the rat. Journal of Neuropathology and Experimental Neurology, 53, 95–102.

    CAS  PubMed  Google Scholar 

  • Browne, S. E., Lin, L., Mattsson, A., Georgievska, B., & Isacson, O. (2001). Selective antibody-induced cholinergic cell and synapse loss produce sustained hippocampal and cortical hypometabolism with correlated cognitive deficits. Experimental Neurology, 170, 36–47.

    CAS  PubMed  Google Scholar 

  • Bucci, D. J., Holland, P. C., & Gallagher, M. (1998). Removal of cholinergic input to rat posterior parietal cortex disrupts incremental processing of conditioned stimuli. Journal of Neuroscience, 1, 8038–8046.

    Google Scholar 

  • Burk, J. A., Herzog, C. D., Porter, M. C., & Sarter, M. (2002). Interactions between aging and cortical cholinergic deafferentation on attention. Neurobiology of Aging, 23, 467–477.

    CAS  PubMed  Google Scholar 

  • Chiba, A. A., Bucci, D. J., Holland, P. C., & Gallagher, M. (1995). Basal forebrain cholinergic lesions disrupt increments but not decrements in conditioned stimulus processing. Journal of Neuroscience, 15, 7315–7322.

    CAS  PubMed  Google Scholar 

  • Conner, J. M., Culberson, A., Packowski, C., Chiba, A. A., & Tuszinski, M. H. (2003). Lesion of the basal forebrain cholinergic system impair task acquisition and abolish cortical plasticity associated with motor skill learning. Neuron, 38, 819–829.

    CAS  PubMed  Google Scholar 

  • Cooper-Kuhn, C. M., Winkler, J., & Kuhn, H. G. (2004). Decreased neurogenesis after cholinergic forebrain lesion in the adult rat. Journal of Neuroscience Research, 15, 155–165.

    Google Scholar 

  • Cutuli, D., Foti, F., Mandolesi, L., De Bartolo, P., Gelfo, F., Federico, F., & Petrosini, L. (2009). Cognitive performances of cholinergically depleted rats following chronic donepezil administration. Journal of Alzheimer’s Disease, 17, 161–176.

    CAS  PubMed  Google Scholar 

  • De Bartolo, P., Gelfo, F., Mandolesi, L., Foti, F., Cutuli, D., & Petrosini, L. (2009). Effects of chronic donepezil treatment and cholinergic deafferentation on parietal pyramidal neuron morphology. Journal of Alzheimer’s Disease, 17, 177–191.

    PubMed  Google Scholar 

  • De Bartolo, P., Cutuli, D., Ricceri, L., Gelfo, F., Foti, F., Laricchiuta, D., Scattoni, M. L., Calamandrei, G., & Petrosini, L. (2010). Does age matter? Behavioral and neuro-anatomical effects of neonatal and adult basal forebrain cholinergic lesions. Journal of Alzheimer’s Disease, 20, 207–227.

    PubMed  Google Scholar 

  • Dornan, W. A., McCampbell, A. R., Tinkler, G. P., Hickman, L. J., Bannon, A. W., Decker, M. W., & Gunther, K. L. (1996). Comparison of site-specific injections into the basal forebrain on water maze and radial arm maze performance in the male rat after immunolesioning with 192 IgG saporin. Behavioral Brain Research, 82, 93–101.

    CAS  Google Scholar 

  • Doughtery, K. D., Salat, D., & Walsh, T. J. (1996). Intraseptal injection of the cholinergic immunotoxin 192 IgG-saporin fails to disrupt latent inhibition in a conditioned taste aversion paradigm. Brain Research, 736, 260–269.

    Google Scholar 

  • Dunnett, S. B., Everitt, B. J., & Robbins, T. W. (1991). The basal forebrain-cortical cholinergic system: Interpreting the functional consequences of excitotoxic lesions. Trends in Neurosciences, 14, 494–501.

    CAS  PubMed  Google Scholar 

  • Everitt, B. J., & Robbins, T. W. (1997). Central cholinergic systems and cognition. Annual Review of Psychology, 48, 649–684.

    CAS  PubMed  Google Scholar 

  • Fiala, J. C., Spacek, J., & Harris, K. M. (2002). Dendritic spine pathology: Cause or consequence of neurological disorders? Brain Research Reviews, 39, 29–54.

    PubMed  Google Scholar 

  • Frick, K. M., Kim, J. J., & Baxter, M. G. (2004). Effects of complete immunotoxin lesions of the cholinergic basal forebrain on fear conditioning and spatial learning. Hippocampus, 14, 244–254.

    CAS  PubMed  Google Scholar 

  • Galani, R., Lehmann, O., Bolmont, T., Aloy, E., Bertrand, F., Lazarus, C., Jeltsch, H., & Cassel, J. C. (2002). Selective immunolesions of CH4 cholinergic neurons do not disrupt spatial memory in rats. Physiological & Behavior, 1, 75–90.

    Google Scholar 

  • Gandhi, C. C., Kelly, R. M., Wiley, R. G., & Walsh, T. J. (2000). Impaired acquisition of a Morris water maze task following selective destruction of cerebellar purkinje cells with OX7-saporin. Behavioral Brain Research, 109, 37–47.

    CAS  Google Scholar 

  • Garcia-Alloza, M., Zaldua, N., Diez-Ariza, M., Marcos, B., Lasheras, B., Javier Gil-Bea, F., & Ramirez, M. J. (2006). Effect of selective cholinergic denervation on the serotonergic system: Implications for learning and memory. Journal of Neuropathology and Experimental Neurology, 65, 1074–1081.

    CAS  PubMed  Google Scholar 

  • Garret, J. E., Kim, I., Wilson, R. E., & Wellman, C. L. (2006). Effect of N-methyl-d-aspartate receptor blockade on plasticity of frontal cortex after cholinergic deafferentation in rat. Neuroscience, 140, 57–66.

    Google Scholar 

  • Gelfo, F., Tirassa, P., De Bartolo, P., Caltagirone, C., Petrosini, L., & Angelucci, F. (2011). Brain and serum levels of nerve growth factor in a rat model of Alzheimer’s disease. Journal of Alzheimer’s Disease, 25, 213–217.

    CAS  PubMed  Google Scholar 

  • Gilad, G. M. (1987). The stress-induced response of the septo-hippocampal cholinergic system. A vectorial outcome of psychoneuroendocrinological interactions. Psychoneuroendocrinology, 12, 167–184.

    CAS  PubMed  Google Scholar 

  • Hagan, J. J., & Morris, R. G. M. (1988). The cholinergic hypothesis of memory: A review of animal experiments. Handbook of Psychopharmachology, 20, 237–323.

    CAS  Google Scholar 

  • Harmon, K. M., & Wellman, C. L. (2003). Differential effects of cholinergic lesions on dendritic spines in frontal cortex of young adult and aging rats. Brain Research, 992, 60–68.

    CAS  PubMed  Google Scholar 

  • Heckers, S., Ohtake, T., Wiley, R. G., Lappi, D. A., Geula, C., & Mesulam, M. M. (1994). Complete and selective cholinergic denervation of rat neocortex and hippocampus but not amygdala by an immunotoxin against the p75 NGF receptor. Journal of Neuroscience, 14, 1271–1289.

    CAS  PubMed  Google Scholar 

  • Kilgard, M. P., & Merzenich, M. M. (1998). Cortical map reorganization enabled by nucleus basalis activity. Science, 279, 1714–1718.

    CAS  PubMed  Google Scholar 

  • Kim, I., Wilson, R. E., & Wellman, C. L. (2005). Aging and cholinergic deafferentation alter GluR1 expression in rat frontal cortex. Neurobiology of Aging, 26, 1073–1081.

    CAS  PubMed  Google Scholar 

  • Kirov, S. A., & Harris, K. M. (1999). Dendrites are more spiny on mature hippocampal neurons when synapses are inactivated. Nature Neuroscience, 2, 878–883.

    CAS  PubMed  Google Scholar 

  • Leanza, G., Nilsson, O. G., Nikkhah, G., Wiley, R. G., & Björklund, A. (1996). Effects of neonatal lesions of the basal forebrain cholinergic system by 192 immunoglobulin G-saporin: Biochemical, behavioural and morphological characterization. Neuroscience, 74, 119–141.

    CAS  PubMed  Google Scholar 

  • Lehmann, O., Jeltsch, H., Lehnardt, O., Pain, L., Lazarus, C., & Cassel, J. C. (2000). Combined lesions of cholinergic and serotonergic neurons in the rat brain using 192 IgG-saporin and 5,7-dihydroxytryptamine: Neurochemical and behavioural characterization. European Journal of Neuroscience, 12, 67–79.

    CAS  PubMed  Google Scholar 

  • Lehmann, O., Jeltsch, H., Lazarus, C., Tritschler, L., Bertrand, F., & Cassel, J. C. (2002). Combined 192 IgG-saporin and 5,7-dihydroxytryptamine lesions in the male rat brain: A neurochemical and behavioral study. Pharmacology, Biochemistry, and Behavior, 72, 899–912.

    CAS  PubMed  Google Scholar 

  • Lehmann, O., Grottick, A. J., Cassel, J. C., & Higgins, G. A. (2003). A double dissociation between serial reaction time and radial maze performance in rats subjected to 192 IgG-saporin lesions of the nucleus basalis and/or the septal region. European Journal of Neuroscience, 18, 651–666.

    CAS  PubMed  Google Scholar 

  • Mandolesi, L., De Bartolo, P., Foti, F., Gelfo, F., Federico, F., Leggio, M. G., & Petrosini, L. (2008). Environmental enrichment provides a cognitive reserve to be spent in the case of brain lesion. Journal of Alzheimer’s Disease, 15, 11–28.

    PubMed  Google Scholar 

  • Markowska, A. L., Olton, D. S., & Givens, B. (1995). Cholinergic manipulations in the medial septal area: Age-related effects on working memory and hippocampal electrophysiology. Journal of Neuroscience, 15, 2063–2073.

    CAS  PubMed  Google Scholar 

  • Matsuoka, N., Maeda, N., Ohkubo, Y., & Yamaguchi, I. (1991). Differential effects of physostigmine and pilocarpine on the spatial memory deficits produced by two septo-hippocampal deafferentations in rats. Brain Research, 559, 233–240.

    CAS  PubMed  Google Scholar 

  • McDonald, M. P., Wenk, G. L., & Crawley, J. N. (1997). Analysis of galanin and the galanin antagonist M40 on delayed non-matching-to-position performance in rats lesioned with the cholinergic immunotoxin 192 IgG-saporin. Behavioral Neuroscience, 111, 552–563.

    CAS  PubMed  Google Scholar 

  • McGaughy, J., & Sarter, M. (1998). Sustained attention performance in rats with intracortical infusions of 192 IgG-saporin-induced cortical cholinergic deafferentation: Effects of physostigmine and FG 7142. Behavioral Neuroscience, 112, 1519–1525.

    CAS  PubMed  Google Scholar 

  • McGaughy, J., & Sarter, M. (1999). Effects of ovariectomy, 192 IgG-saporin-induced cortical cholinergic deafferentation, and administration of estradiol on sustained attention performance in rats. Behavioral Neuroscience, 113, 1–17.

    Google Scholar 

  • McGaughy, J., Kaiser, T., & Sarter, M. (1996). Behavioral vigilance following infusions of 192 IgG-saporin into the basal forebrain: Selectivity of the behavioral impairment and relation to cortical AChE-positive fiber density. Behavioral Neuroscience, 110, 247–256.

    CAS  PubMed  Google Scholar 

  • McGaughy, J., Decker, M. W., & Sarter, M. (1999). Enhancement of sustained attention performance by the nicotinic acetylcholine receptor agonist ABT-418 in intact but not basal forebrain-lesioned rats. Psychopharmacology, 119, 175–182.

    Google Scholar 

  • McGaughy, J., Everitt, B. J., Robbins, T. W., & Sarter, M. (2000). The role of cortical cholinergic afferent projections in cognition: Impact of new selective immunotoxins. Behavioural Brain Research, 115, 251–263.

    CAS  PubMed  Google Scholar 

  • McGaughy, J., Dalley, J. W., Morrison, C. H., Everitt, B. J., & Robbins, T. W. (2002). Selective behavioral and neurochemical effects of cholinergic lesions produced by intrabasalis infusions of 192 IgG-saporin on attentional performance in a five-choice serial reaction time task. Journal of Neuroscience, 22, 1905–1913.

    CAS  PubMed  Google Scholar 

  • McMahan, R. W., Sobel, T. J., & Baxter, M. G. (1997). Selective immunolesions of hippocampal cholinergic input fail to impair spatial working memory. Hippocampus, 7, 130–136.

    CAS  PubMed  Google Scholar 

  • Mesulam, M. M., Mufson, E. J., Wainer, B. H., & Levey, A. I. (1983). Central cholinergic pathways in the rat: An overview based on an alternative nomenclature (Ch1-Ch6). Neuroscience, 10, 1185–1201.

    CAS  PubMed  Google Scholar 

  • Mizoguchi, K., Yuzurihara, M., Ishige, A., Sasaki, H., & Tabira, T. (2001). Effect of chronic stress on cholinergic transmission in rat hippocampus. Brain Research, 915, 108–111.

    CAS  PubMed  Google Scholar 

  • Mizuno, T., & Kimura, F. (1997). Attenuated stress response of hippocampal acetylcholine release and adrenocortical secretion in aged rats. Neuroscience Letters, 222, 49–52.

    CAS  PubMed  Google Scholar 

  • Nilsson, O. G., Strecker, R. E., Daszuta, A., & Björklund, A. (1988). Combined cholinergic and serotonergic denervation of the forebrain produces severe deficits in a spatial learning task in the rat. Brain Research, 453, 235–246.

    CAS  PubMed  Google Scholar 

  • Nilsson, O.G., Leanza, G., Rosenblad, C., Lappi, D.A., Wiley, R.G., & Björklund, A. (1992). Spatial learning impairments in rats with selective immunolesion of the forebrain cholinergic system. Neuroreport, 3,1005–1008.

    CAS  PubMed  Google Scholar 

  • Ohtake, T., Heckers, S., Wiley, R. G., Lappi, D. A., Mesulam, M. M., & Geula, C. (1997). Retrograde degeneration and colchicine protection of basal forebrain cholinergic neurons following hippocampal injections of an immunotoxin against the P75 nerve growth factor receptor. Neuroscience, 78, 123–133.

    CAS  PubMed  Google Scholar 

  • Paban, V., Chambon, C., Jaffard, M., & Alescio-Lautier, B. (2005a). Behavioral effects of basal forebrain cholinergic lesions in young adult and aging rats. Behavioral Neuroscience, 119, 933–945.

    PubMed  Google Scholar 

  • Paban, V., Jaffard, M., Chambon, C., Malafosse, M., & Alescio-Lautier, B. (2005b). Time course of behavioral changes following basal forebrain cholinergic damage in rats: Environmental enrichment as a therapeutic intervention. Neuroscience, 132, 13–32.

    CAS  PubMed  Google Scholar 

  • Pang, K. C., Nocera, R., Secor, A. J., & Yoder, R. M. (2001). GABAergic septohippocampal neurons are not necessary for spatial memory. Hippocampus, 11, 814–827.

    CAS  PubMed  Google Scholar 

  • Pappas, B. A., Davidson, C. M., Fortin, T., Nallathamby, S., Park, G. A., Mohr, E., & Wiley, R. G. (1996). 192 IgG-saporin lesion of basal forebrain cholinergic neurons in neonatal rats. Brain Research. Developmental Brain Research, 96, 52–61.

    CAS  PubMed  Google Scholar 

  • Pappas, B. A., Payne, K. B., Fortin, T., & Sherren, N. (2005). Neonatal lesion of forebrain cholinergic neurons: Further characterization of behavioral effects and permanency. Neuroscience, 133, 485–492.

    CAS  PubMed  Google Scholar 

  • Perry, E. K., Tomlinson, B. E., Blessed, G., Bergmann, K., Gibson, P. H., & Perry, R. H. (1978). Correlation of cholinergic abnormalities with senile plaques and mental test scores in senile dementia. British Medical Journal, 2, 1457–1479.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Perry, T., Hodges, H., & Gray, J. A. (2001). Behavioural, histological and immunocytochemical consequences following 192 IgG-saporin immunolesions of the basal forebrain cholinergic system. Brain Research Bulletin, 54, 29–48.

    CAS  PubMed  Google Scholar 

  • Pioro, E. P., & Cuello, A. C. (1988). Purkinje cells of adult rat cerebellum express nerve growth factor receptor immunoreactivity: Light microscopy observations. Brain Research, 455, 182–186.

    CAS  PubMed  Google Scholar 

  • Rennie, K., Fréchette, M., & Pappas, B. A. (2011). The effects of neonatal forebrain cholinergic lesion on adult hippocampal neurogenesis. Brain Research, 1373, 79–90.

    CAS  PubMed  Google Scholar 

  • Ricceri, L. (2003). Behavioral patterns under cholinergic control during development: Lessons learned from the selective immunotoxin 192 IgG saporin. Neuroscience and Biobehavioral Reviews, 27, 377–384.

    CAS  PubMed  Google Scholar 

  • Ricceri, L., Minghetti, L., Moles, A., Popoli, P., Confaloni, A., De Simone, R., Piscopo, P., Scattoni, M.L., Di Luca, M., Calamandrei, G. (2004). Cognitive and neurological deficits induced by early and prolonged basal forebrain cholinergic hypofunction in rats. Experimental Neurology, 189, 162–172.

    CAS  PubMed  Google Scholar 

  • Ricceri, L., Cutuli, D., Venerosi, A., Scattoni, M.L., Calamandrei, G. (2007). Neonatal basal forebrain cholinergic hypofunction affects ultrasonic vocalizations and fear conditioning responses in preweaning rats. Behavioral Brain Research, 183, 111–117.

    CAS  Google Scholar 

  • Ricceri, L., Calamandrei, G., & Berger-Sweeney, J. (1997). Different effects of postnatal day 1 versus 7 192 immunoglobulin G-saporin lesions on learning, exploratory behaviors, and neurochemistry in juvenile rats. Behavioral Neuroscience, 111, 1292–1302.

    CAS  PubMed  Google Scholar 

  • Ricceri, L., Usiello, A., Valanzano, A., Calamandrei, G., Frick, K., & Berger-Sweeney, J. (1999). Neonatal 192 IgG-saporin lesions of basal forebrain cholinergic neurons selectively impair response to spatial novelty in adult rats. Behavioral Neuroscience, 113, 1204–1215.

    CAS  PubMed  Google Scholar 

  • Ricceri, L., Hohmann, C., & Berger-Sweeney, J. (2002). Early neonatal 192 IgG saporin induces learning impairments and disrupts cortical morphogenesis in rats. Brain Research, 954, 160–172.

    CAS  PubMed  Google Scholar 

  • Rispoli, V., Marra, R., Costa, N., Scipione, L., Rotiroti, D., De Vita, D., Liberatore, F., & Carelli, V. (2006). Choline pivaloyl ester strengthened the benefit effects of Tacrine and Galantamine on electroencephalographic and cognitive performances in nucleus basalis magnocellularis-lesioned and aged rats. Pharmacology, Biochemistry, and Behavior, 84, 453–467.

    CAS  PubMed  Google Scholar 

  • Savage, S., Kehr, J., Olson, L., & Mattsson, A. (2011). Impaired social interaction and enhanced sensitivity to phencyclidine-induced deficits in novel object recognition in rats with cortical cholinergic denervation. Neuroscience, 195, 60–69.

    CAS  PubMed  Google Scholar 

  • Scattoni, M. L., Puopolo, M., Calamandrei, G., & Ricceri, L. (2005). Basal forebrain cholinergic lesions in 7-day-old rats alter ultrasound vocalisations and homing behaviour. Behavioural Brain Research, 161, 169–172.

    PubMed  Google Scholar 

  • Scattoni, M. L., Adriani, W., Calamandrei, G., Laviola, G., & Ricceri, L. (2006). Long-term effects of neonatal basal forebrain cholinergic lesions on radial maze learning and impulsivity in rats. Behavioural Pharmacology, 17, 517–524.

    CAS  PubMed  Google Scholar 

  • Shen, J., Barnes, C. A., Wenk, G. L., & McNaughton, B. L. (1996). Differential effects of selective immunotoxic lesions of medial septal cholinergic cells on spatial working and reference memory. Behavioral Neuroscience, 110, 1181–1186.

    CAS  PubMed  Google Scholar 

  • Steckler, T., Keith, A. B., Wiley, R. G., & Sahgal, A. (1995). Cholinergic lesions by 192 IgG-saporin and short-term recognition memory: Role of the septo-hippocampal projection. Neuroscience, 66, 101–114.

    CAS  PubMed  Google Scholar 

  • Thomas, L. B., Book, A. A., & Schweitzer, J. B. (1991). Immunohistochemical detection of a monoclonal antibody directed against the NGF receptor in basal forebrain neurons following intraventricular injection. Journal of Neuroscience Methods, 37, 37–45.

    CAS  PubMed  Google Scholar 

  • Torres, E. M., Perry, T. A., Blockland, A., Wilkinson, L. S., Wiley, R. G., Lappi, D. A., & Dunnet, S. B. (1994). Behavioural, histochemical and biochemical consequences of selective immunolesions in discrete regions of the basal forebrain cholinergic system. Neuroscience, 63, 95–122.

    CAS  PubMed  Google Scholar 

  • Traissard, N., Herbeaux, K., Cosquer, B., Jeltsch, H., Ferry, B., Galani, R., Pernon, A., Majchrzak, M., & Cassel, J. C. (2007). Combined damage to entorhinal cortex and cholinergic basal forebrain neurons, two early neurodegenerative features accompanying Alzheimer’s disease: Effects on locomotor activity and memory functions in rats. Neuropsychopharmacology, 32, 851–871.

    CAS  PubMed  Google Scholar 

  • Turchi, J., & Sarter, M. (1997). Cortical acetylcholine and processing capacity: Effects of cortical cholinergic deafferentation on crossmodal divided attention in rats. Cognitive Brain Research, 6, 147–158.

    CAS  PubMed  Google Scholar 

  • Vnek, N., Kromer, L. F., Wiley, R. G., & Rothblat, L. A. (1996). The basal forebrain cholinergic system and object memory in the rat. Brain Research, 710, 265–270.

    CAS  PubMed  Google Scholar 

  • Waite, J. J., & Thal, L. J. (1996). Lesions of the cholinergic nuclei in the rat basal forebrain: Excitotoxins vs. an immunotoxin. Life Sciences, 58, 1947–1953.

    CAS  PubMed  Google Scholar 

  • Waite, J. J., Chen, A. D., Wardlow, M. L., Wiley, R. G., Lappi, D. A., & Thal, L. J. (1995). 192 Immunoglobulin G-saporin produces graded behavioral and biochemical changes accompanying the loss of cholinergic neurons of the basal forebrain and cerebellar purkinje cells. Neuroscience, 65, 463–476.

    CAS  PubMed  Google Scholar 

  • Waite, J. J., Wardlow, M. L., & Power, A. E. (1999). Deficit in selective and divided attention associated with cholinergic basal forebrain immunotoxic lesion produced by 192-saporin; motoric/sensory deficit associated with Purkinje cell immunotoxic lesion produced by OX7-saporin. Neurobiology of Learning and Memory, 71, 325–352.

    CAS  PubMed  Google Scholar 

  • Walsh, T. J., & Opello, K. D. (1994). The use of AF64A (ethylcholine aziridium ion) to model Alzheimer’s disease. In Toxi-induced models of neurological disorders (pp. 259–279). New York: Plenum press.

    Google Scholar 

  • Walsh, T. J., Kelly, R. M., Dougherty, K. D., Stackman, R. W., Wiley, R. G., & Kutscher, C. L. (1995). Behavioral and neurobiological alterations induced by the immunotoxin 192-IgG-saporin: Cholinergic and non-cholinergic effects following i.c.v. injection. Brain Research, 702, 233–245.

    CAS  PubMed  Google Scholar 

  • Walsh, T. J., Herzog, C. D., Gandhi, C., Stackman, R. W., & Wiley, R. G. (1996). Injection of IgG 192-saporin into the medial septum produces cholinergic hypofunction and dose-dependent working memory deficits. Brain Research, 726, 69–79.

    CAS  PubMed  Google Scholar 

  • Wellman, C. L., & Sengelaub, D. R. (1995). Alterations in dendritic morphology of frontal cortical neurons after basal forebrain lesions in adult and aged rats. Brain Research, 669, 48–58.

    CAS  PubMed  Google Scholar 

  • Wenk, G. L., Stoehr, J. D., Quintana, G., Mobley, S., & Wiley, R. G. (1994). Behavioral, biochemical, histological, and electrophysiological effects of 192 IgG-saporin injections into the basal forebrain of rats. Journal of Neuroscience, 14, 5986–5995.

    CAS  PubMed  Google Scholar 

  • Wiley, R. G. (1992). Neural lesioning with ribosome-inactivating proteins: Suicide transport and immunolesioning. Trends in Neurosciences, 15, 285–290.

    CAS  PubMed  Google Scholar 

  • Wiley, R. G., Berbos, T. G., Deckwerth, T. L., Johnson, E. M., Jr., & Lappi, D. A. (1995). Destruction of the cholinergic basal forebrain using immunotoxin to rat NGF receptor: Modeling the cholinergic degeneration of Alzheimer’s disease. Journal of the Neurological Sciences, 128, 157–166.

    CAS  PubMed  Google Scholar 

  • Winters, B. D., & Bussey, T. J. (2005). Removal of cholinergic input to perirhinal cortex disrupts object recognition but not spatial working memory in the rat. European Journal of Neuroscience, 21, 2263–2270.

    PubMed  Google Scholar 

  • Works, S. J., Wilson, R. E., & Wellman, C. L. (2004). Age-dependent effect of cholinergic lesion on dendritic morphology in rat frontal cortex. Neurobiology of Aging, 25, 963–974.

    CAS  PubMed  Google Scholar 

  • Wrenn, C. C., & Wiley, R. G. (1998). The behavioral functions of the cholinergic basal forebrain: lessons from 192 IgG-saporin. International Journal of Developmental Neuroscience, 16, 595–602.

    CAS  PubMed  Google Scholar 

  • Wrenn, C. C., & Wiley, R. G. (2001). Lack of effect of moderate Purkinje cell loss on working memory. Neuroscience, 107, 433–445.

    CAS  PubMed  Google Scholar 

  • Wrenn, C. C., Lappi, D. A., & Wiley, R. G. (1999). Threshold relationship between lesion extent of the cholinergic basal forebrain in the rat and working memory impairment in the radial maze. Brain Research, 847, 284–298.

    CAS  PubMed  Google Scholar 

  • Zhang, Z. J., Berbos, T. G., Wrenn, C. C., & Wiley, R. G. (1996). Loss of nucleus basalis magnocellularis, but not septal, cholinergic neurons correlates with passive avoidance impairment in rats treated with 192-saporin. Neuroscience Letters, 203, 214–218.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Petrosini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Petrosini, L., De Bartolo, P., Cutuli, D. (2014). Neurotoxic Effects, Mechanisms, and Outcome of 192-IgG Saporin. In: Kostrzewa, R. (eds) Handbook of Neurotoxicity. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5836-4_79

Download citation

Publish with us

Policies and ethics