Skip to main content

Dopaminergic Neurons in Parkinson’s Disease

  • Reference work entry
  • First Online:

Abstract

The discovery of dopamine as a brain neurotransmitter by Arvid Carlsson and colleagues about 50 years ago contributed to better understand some of the brain diseases. Some of the drugs that are most widely used in neurologic and psychiatry illnesses, such as levodopa and antipsychotic drugs, act on dopaminergic mechanism. The discovery that the motor impairments of Parkinson’s disease patients improved after restoring the physiological levels of striatal dopamine with levodopa attracted the attention of the neuroscience community for the role of this neurotransmitter in motor and brain functions. In the last decades, the knowledge has also been challenged by evidence that Parkinson’s disease also affects cognitive and affective functions. Shortly after the introduction of levodopa as a therapy, a complex set of secondary phenomena such as dyskinesia was observed following repeated administration of the dopamine precursor. Information of dopaminergic cells and circuits has been enriched by findings obtained with several and highly sensitive technology in cellular biology, with sophisticated behavioral analyses of transgenic animals and functional neuroimaging. The present chapter attempts to review results reported in different clinical studies and animal models to provide a comprehensive picture of the role of dopamine in Parkinson’s disease. Treatments have successfully been translated from preclinical to pharmacotherapeutic arsenal increasing clinical settings.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   549.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

3-OMD:

3-O-methyldopa

6-OHDA:

6-hydroxydopamine

AIMs:

Abnormal involuntary movements

AS:

Alpha-synuclein

CNS:

Central nervous system

COMT:

Catechol-O-methyltransferase

DARPP-32:

Dopamine- and cAMP-regulated phosphoprotein, Mr 32 kDa

DAT:

Dopamine transporter

DLB:

Dementia with Lewy body

DMV:

Dorsal motor nucleus of vagus

DYN:

Dynorphin

ENK:

Enkephalin

FS:

Fast spiking

GPCRs:

G protein-coupled receptors

GPe:

External segment of the globus pallidus

GPi:

Internal segment of the globus pallidus

iLBP:

Incident Lewy body pathology

IrtZ:

Intermediate reticular zone

i.v.:

Intravenous

LB:

Lewy bodies

LC:

Locus coeruleus

L-DOPA:

L-3,4-dihydroxyphenylalanine

LN:

Lewy neurites

LTS:

Low-threshold spiking

MAO-B:

Monoamine oxidase-B

MPTP:

1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine

MSN:

Medium spiny neuron

NPY:

Neuropeptide Y

PD:

Parkinson’s disease

PET:

Positive emission tomography

PV:

Parvalbumin

SN:

Substantia nigra

SNc:

Substantia nigra pars compacta

SNr:

Substantia nigra pars reticulata

SOM:

Somatostatin

SP:

Substance P

SPECT:

Single-photon emission computed tomography

STN:

Subthalamic nucleus

TH:

Tyrosine hydroxylase

VMAT2:

Vesicular monoamine transporter 2

VTA:

Ventral tegmental area

References

  • Aarts, M., Liu, Y., Liu, L., Besshoh, S., Arundine, M., et al. (2002). Treatment of ischemic brain damage by perturbing NMDA receptor- PSD-95 protein interactions. Science, 298, 846–850.

    CAS  PubMed  Google Scholar 

  • Ahlskog, J. E., & Uitti, R. J. (2010). Rasagiline, Parkinson neuroprotection, and delayed-start trials: Still no satisfaction? Neurology, 74, 1143–1148.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Akyol, A., Akyildiz, U. O., & Tataroglu, C. (2006). Vascular Parkinsonism: a case of lacunar infarction localized to mesencephalic substantia nigra. Parkinsonism & Related Disorders, 12, 459–461.

    Google Scholar 

  • Albin, R. L., Young, A. B., & Penney, J. B. (1989). The functional anatomy of basal ganglia disorders. Trends in Neurosciences, 12, 366–375.

    CAS  PubMed  Google Scholar 

  • Andén, N. E., Carlsson, A., Dahlström, A., Fuxe, K., Hillarp, N., et al. (1964). Demonstration and mapping out of nigro-neostriatal dopamine neurons. Life Sciences, 3, 523–530.

    PubMed  Google Scholar 

  • Archibald, N. K., Clarke, M. P., Mosimann, U. P., & Burn, D. J. (2009). The retina in Parkinson’s disease. Brain, 132, 1128–1145.

    PubMed  Google Scholar 

  • Ashina, M., Lassen, L. H., Bendtsen, L., Jensen, R., & Olesen, J. (1999). Effect of inhibition of nitric oxide synthase on chronic tension-type headache: A randomised crossover trial. Lancet, 353, 287–289.

    CAS  PubMed  Google Scholar 

  • Assal, F., Spahr, L., Hadengue, A., Rubbia-Brandt, L., & Burkhard, P. R. (1998). Tolcapone and fulminant hepatitis. Lancet, 352, 958.

    CAS  PubMed  Google Scholar 

  • Benamer, H. T., Patterson, J., Wyper, D. J., Hadley, D. M., Macphee, G. J., et al. (2000). Correlation of Parkinson’s disease severity and duration with 123I-FP-CIT SPECT striatal uptake. Movement Disorders, 15, 692–698.

    CAS  PubMed  Google Scholar 

  • Bentivoglio, M., & Morelli, M. (2005). The organisation and circuits of mesencephalic dopaminergic neurons and the distribution of dopamine receptors in the brain. In S. B. Dunnett, M. Bentivoglio, A. Björklund, & T. Hokfelt (Eds.), Handbook of chemical neuroanatomy (Dopamine, Vol. 21, pp. 1–107). Amsterdam, Boston: Elsevier.

    Google Scholar 

  • Bergson, C., Mrzljak, L., Smiley, J. F., Pappy, M., Levenson, R., et al. (1995). Regional, cellular, and subcellular variations in the distribution of D1 and D5 dopamine receptors in primate brain. Journal of Neuroscience, 15, 7821–7836.

    CAS  PubMed  Google Scholar 

  • Bevan, M. D., Booth, P. A., Eaton, S. A., & Bolam, J. P. (1998). Selective innervation of neostriatal interneurons by a subclass of neuron in the globus pallidus of the rat. Journal of Neuroscience, 18, 9438–9452.

    CAS  PubMed  Google Scholar 

  • Björklund, A., & Dunnett, S. B. (2007). Dopamine neuron systems in the brain: an update. Trends in Neurosciences, 30, 194–202.

    PubMed  Google Scholar 

  • Björklund, A., & Lindvall, O. (1984). Dopamine-containing systems in the CNS. In A. Björklund & T. Hökfelt (Eds.), Handbook of chemical neuroanatomy (Classical transmitters in the CNS, Vol. 2, pp. 55–122). Amsterdam: Elsevier.

    Google Scholar 

  • Bonifácio, M. J., Palma, P. N., Almeida, L., & Soares-da-Silva, P. (2007). Catechol-O-methyltransferase and its inhibitors in Parkinson’s disease. CNS Drug Reviews, 13, 352–379.

    PubMed  Google Scholar 

  • Braak, H., Del Tredici, K., Rub, U., de Vos, R. A., Jansen Steur, E. N., et al. (2003). Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiology of Aging, 24, 197–211.

    PubMed  Google Scholar 

  • Brooks, D. J. (2003). Imaging end points for monitoring neuroprotection in Parkinson’s disease. Annals of Neurology, 53, 110–118.

    Google Scholar 

  • Brooks, D. J. (2007). Functional neuroimaging in movement disorders. In J. Jankovic & E. Tolosa (Eds.), Parkinson’s disease & movement disorders (5th ed.). Philadelphia, PA: Lippincott Williams & Wilkins.

    Google Scholar 

  • Carlsson, A., Falck, B., & Hillarp, N. A. (1962). Cellular localization of brain monoamines. Acta Physiologica Scandinavica, 56, 1–28.

    CAS  Google Scholar 

  • Cenci, M. A., & Lindgren, H. S. (2007). Advances in understanding l-DOPA-induced dyskinesia. Current Opinion in Neurobiology, 7, 665–671.

    Google Scholar 

  • Cenci, M. A., Ohlin, K. E., & Rylander, D. (2009). Plastic effects of l-DOPA treatment in the basal ganglia and their relevance to the development of dyskinesia. Parkinsonism & Related Disorders, 15, 59–63.

    Google Scholar 

  • Centonze, D., Grande, C., Usiello, A., Gubellini, P., Erbs, E., et al. (2003). Receptor subtypes involved in the presynaptic and postsynaptic actions of dopamine on striatal interneurons. Journal of Neuroscience, 23, 6245–6254.

    CAS  PubMed  Google Scholar 

  • Chalimoniuk, M., & Langfort, J. (2007). The effect of subchronic, intermittent l-DOPA treatment on neuronal nitric oxide synthase and soluble guanylyl cyclase expression and activity in the striatum and midbrain of normal and MPTP-treated mice. Neurochemistry International, 50, 821–833.

    CAS  PubMed  Google Scholar 

  • Chalimoniuk, M., Stepień, A., & Strosznajder, J. B. (2004). Pergolide mesylate, a dopaminergic receptor agonist, applied with l-DOPA enhances serum antioxidant enzyme activity in Parkinson disease. Clinical Neuropharmacology, 27, 223–229.

    CAS  PubMed  Google Scholar 

  • Chase, T. N. (1998). The significance of continuous dopaminergic stimulation in the treatment of Parkinson’s disease. Drugs, 55, 1–9.

    PubMed  Google Scholar 

  • Chaudhuri, R., & Schapira, A. (2009). Non-motor symptoms of Parkinson’s disease: Dopaminergic pathophysiology and treatment. Lancet Neurology, 8, 464–474.

    CAS  PubMed  Google Scholar 

  • Chaudhuri, K. R., Healy, D. G., & Schapira, A. H. (2006). Non-motor symptoms of Parkinson’s disease: Diagnosis and management. Lancet Neurology, 5, 235–245.

    PubMed  Google Scholar 

  • Chen, J. J., Swope, D. M., Dashtipour, K., & Lyons, K. E. (2009). Transdermal rotigotine: A clinically innovative dopamine-receptor agonist for the management of Parkinson’s disease. Pharmacotherapy, 29, 1452–1467.

    CAS  PubMed  Google Scholar 

  • Chevalier, G., Vacher, S., Deniau, J. M., & Desban, M. (1985). Disinhibition as a basic process in the expression of striatal functions. I. The striato-nigral influence on tecto-spinal/tecto-diencephalic neurons. Brain Research, 334, 215–226.

    CAS  PubMed  Google Scholar 

  • Christopherson, K. S., Hillier, B. J., Lim, W. A., & Bredt, D. S. (1999). PSD-95 assembles a ternary complex with the N-methyl-D-aspartic acid receptor and a bivalent neuronal NO synthase PDZ domain. Journal of Biological Chemistry, 274, 27467–27473.

    CAS  PubMed  Google Scholar 

  • Cisek, P., & Kalaska, J. F. (2010). Neural mechanisms for interacting with a world full of action choices. Annual Review of Neuroscience, 33, 269–298.

    CAS  PubMed  Google Scholar 

  • Clarke, C. E., Worth, P., Grosset, D., & Stewart, D. (2009). Systematic review of apomorphine infusion, levodopa infusion and deep brain stimulation in advanced Parkinson’s disease. Parkinsonism & Related Disorders, 15, 728–741.

    Google Scholar 

  • Cotzias, G. C. (1971). Levodopa in the treatment of Parkinsonism. JAMA: The Journal of the American Medical Association, 218, 1903–1908.

    CAS  Google Scholar 

  • Cragg, S. J., & Rice, M. E. (2004). DAncing past the DAT at a DA synapse. Trends in Neurosciences, 27, 270–277.

    CAS  PubMed  Google Scholar 

  • Crossman, A. R. (1987). Primate models of dyskinesia: The experimental approach to the study of basal ganglia-related involuntary movement disorders. Neuroscience, 21, 1–40.

    CAS  PubMed  Google Scholar 

  • Da Cunha, C., Wietzikoski, E. C., Bortolanza, M., Dombrowski, P., Santos, L. M., et al. (2009). Non-motor function of the midbrain dopaminergic neurons. In G. Di Giovanni, V. Di Matteo, & E. Esposito (Eds.), Birth, life and death of dopaminergic neurons in the substantia nigra. New York: Springer-Verlag/Wien.

    Google Scholar 

  • Dahlström, A., & Fuxe, K. (1964). Evidence for the existence of monoamine-containing neurons in the central nervous system. I. Demonstration of monoamines in the cell bodies of brain stem neurons. Acta Physiologica Scandinavica, 232, 1–55.

    Google Scholar 

  • Damier, P., Hirsch, E. C., Agid, Y., & Graybiel, A. M. (1999a). The substantia nigra of the human brain. I. Nigrosomes and the nigral matrix, a compartmental organization based on calbindin D(28K) immunohistochemistry. Brain, 122, 1421–1436.

    PubMed  Google Scholar 

  • Damier, P., Hirsch, E. C., Agid, Y., & Graybiel, A. M. (1999b). The substantia nigra of the human brain. II. Patterns of loss of dopamine-containing neurons in Parkinson’s disease. Brain, 122, 1437–1448.

    PubMed  Google Scholar 

  • De la Fuente-Fernandez, R., Pal, P. K., Vingerhoets, F. J., Kishore, A., Schulzer, M., et al. (2000). Evidence for impaired presynaptic dopamine function in parkinsonian patients with motor fluctuations. Journal of Neural Transmission, 107, 49–57.

    PubMed  Google Scholar 

  • Dekundy, A., Lundblad, M., Danysz, W., & Cenci, M. A. (2007). Modulation of l-DOPA-induced abnormal involuntary movements by clinically tested compounds: Further validation of the rat dyskinesia model. Behavioural Brain Research, 179, 76–89.

    CAS  PubMed  Google Scholar 

  • Del Bel, E. A., Guimaraes, F. S., Bermudez-Echeverry, M., Gomes, M. Z., Schiaveto-de-Souza, A., et al. (2005). Role of nitric oxide on motor behavior. Cellular and Molecular Neurobiology, 25, 371–392.

    PubMed  Google Scholar 

  • Del Bel, E., Padovan-Neto, F. E., Raisman-Vozari, R., & Lazzarini, M. (2011). Role of nitric oxide in motor control: Implications for Parkinson’s disease pathophysiology and treatment. Current Pharmaceutical Design, 17, 471–488.

    Google Scholar 

  • Del Tredici, K., Rub, U., De Vos, R. A., Bohl, J. R., & Braak, H. (2002). Where does parkinson disease pathology begin in the brain? Journal of Neuropathology and Experimental Neurology, 61, 413–426.

    PubMed  Google Scholar 

  • DeLong, M. R. (1990). Primate models of movement disorders of basal ganglia origin. Trends in Neurosciences, 13, 281–285.

    CAS  PubMed  Google Scholar 

  • Dev, K. K. (2004). Making protein interactions druggable: Targeting PDZ domains. Nature Reviews. Drug Discovery, 3, 1047–1056.

    CAS  PubMed  Google Scholar 

  • Doucet, M. V., Harkin, A., & Dev, K. K. (2012). The PSD-95/nNOS complex: New drugs for depression? Pharmacology and Therapeutics, 133, 218–229.

    CAS  PubMed  Google Scholar 

  • Dubois, B., & Pillon, B. (1997). Cognitive deficits in Parkinson’s disease. Journal of Neurology, 244, 2–8.

    CAS  PubMed  Google Scholar 

  • Eriksen, J., Jørgensen, T. N., & Gether, U. (2010). Regulation of dopamine transporter function by protein-protein interactions: new discoveries and methodological challenges. Journal of Neurochemistry, 113, 27–41.

    CAS  PubMed  Google Scholar 

  • Fahn, S. (2008). The history of dopamine and levodopa in the treatment of Parkinson's disease. Movement Disorders, 23, 497–508.

    Google Scholar 

  • Fearnley, J. M., & Lees, A. J. (1991). Ageing and Parkinson’s disease: Substantia nigra regional selectivity. Brain, 114, 2283–2301.

    PubMed  Google Scholar 

  • Ferrario, J. E., Taravini, I. R. E., Mourlevat, S., Stefano, A. V., Delfino, M. A., et al. (2004). Differential gene expresión induced by chronic levodopa treatment in the striatum of rats with lesions of the nigrostriatal system. Journal of Neurochemistry, 90, 1348–1358.

    CAS  PubMed  Google Scholar 

  • Gallagher, D. A., & Schrag, A. (2008). Impact of newer pharmacological treatments on quality of life in patients with Parkinson’s disease. CNS Drugs, 22, 563–586.

    CAS  PubMed  Google Scholar 

  • Garcia de Y'ebenes, J., Gervas, J. J., Iglesias, J., Mena, M. A., Martin del Rio, R., et al. (1982). Biochemical findings in a case of parkinsonism secondary to brain tumor. Annals of Neurology, 11, 313–316.

    PubMed  Google Scholar 

  • Garthwaite, J. (2008). Concepts of neural nitric oxide-mediated transmission. European Journal of Neuroscience, 27, 2783–2802.

    PubMed Central  PubMed  Google Scholar 

  • Garthwaite, J., Charles, S. L., & Chess-Williams, R. (1988). Endothelium-derived relaxing factor release on activation of NMDA receptors suggests role as intercellular messenger in the brain. Nature, 336, 385–388.

    CAS  PubMed  Google Scholar 

  • Gerfen, C.R., Engber, T.M., Mahan, L.C., Susel, Z., Chase, T.N., Monsma, F.J. Jr, Sibley, D.R. (1990). D1 and D2 dopamine receptor-regulated gene expression of striatonigral and striatopallidal neurons. Science, 250(4986), 1429–1432.

    CAS  PubMed  Google Scholar 

  • Gerfen, C. R., & Surmeier, D. J. (2011). Modulation of striatal projection systems by dopamine. Annual Review of Neuroscience, 34, 441–446.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gershanik, O., Emre, M., Bernhard, G., & Sauer, D. (2003). Efficacy and safety of levodopa with entacapone in Parkinson’s disease patients suboptimally controlled with levodopa alone, in daily clinical practice: An international, multicentre, open-label study. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 27, 963–971.

    CAS  Google Scholar 

  • Goedert, M. (1997). Familial Parkinson’s disease. The awakening of alpha-synuclein. Nature, 388, 232–233.

    CAS  PubMed  Google Scholar 

  • Goetz, C. G., Poewe, W., Rascol, O., & Sampaio, C. (2005). Evidence-based medical review update: Pharmacological and surgical treatments of Parkinson’s disease: 2001 to 2004. Movement Disorders, 20, 523–539.

    PubMed  Google Scholar 

  • Grace, A. A. (1991). Phasic versus tonic dopamine release and the modulation of dopamine system responsivity: A hypothesis for the etiology of schizophrenia. Neuroscience, 41, 1–24.

    CAS  PubMed  Google Scholar 

  • Grace, A. A. (2002). Dopamine. In K. L. Davis, D. Charney, J. T. Coyle, & C. Nemeroff Neuropsychopharmacology: The fifth generation of progress editors. Philadelphia, PA: Lippincott, Williams, & Wilkins.

    Google Scholar 

  • Graybiel, A. M., Aosaki, T., Flaherty, A. W., & Kimura, M. (1994). The basal ganglia and adaptive motor control. Science, 265, 1826–1831.

    CAS  PubMed  Google Scholar 

  • Greengard, P., Allen, P. B., & Nairn, A. C. (1999). Beyond the dopamine receptor: The DARPP-32/protein phosphatase-1 cascade. Neuron, 23, 435–447.

    CAS  PubMed  Google Scholar 

  • Grinberg, L. T., Rueb, U., Alho, A. T., & Heinsen, H. (2010). Brainstem pathology and non-motor symptoms in PD. Journal of Neurological Sciences, 289, 81–88.

    Google Scholar 

  • Gumulka, S. W., Dinnendahl, V., Schönhöfer, P. S., & Stock, K. (1976). Dopaminergic stimulants and cyclic nucleotides in mouse brain. Effects of dopaminergic antagonists, olinolytics, and GABA agonists. Naunyn-Schmiedeberg’s Archives of Pharmacology, 295, 21–26.

    CAS  PubMed  Google Scholar 

  • Haber, S. N., & Gdowski, M. J. (2004). The basal ganglia. In G. Paxinos & J. K. Mai (Eds.), The human nervous system (2nd ed.). San Diego, CA: Elsevier Academic Press.

    Google Scholar 

  • Harden, D. G., & Grace, A. A. (1995). Activation of dopamine cell firing by repeated l-DOPA administration to dopamine-depleted rats: Its potential role in mediating the therapeutic response to LDOPA treatment. Journal of Neuroscience, 15, 6157–6166.

    CAS  PubMed  Google Scholar 

  • Hassler, R. (1938). Zur die Pathologie der Paralysis Agitans and des postenzephalitischen Parkinsonismus. Journal für Psychologie und Neurologie, 48, 387–476.

    Google Scholar 

  • Hauser, R. A. (2009). Levodopa: Past, present, and future. European Neurology, 62, 1–8.

    CAS  PubMed  Google Scholar 

  • Henry, B., Crossman, A. R., & Brotchie, J. M. (1998). Characterization of enhanced behavioral responses to l-DOPA following repeated administration in the 6-hydroxydopamine-lesioned rat model of Parkinson’s disease. Experimental Neurology, 151, 334–342.

    CAS  PubMed  Google Scholar 

  • Herve, D., & Girault, J. A. (2005). Signal transduction of dopamine receptors. In S.B. Dunnett, M. Bentivoglio, A. Björklund & Hökfelt T (Eds.), Handbook of chemical neuroanatomy. Dopamine, Vol. 21, pp. 109–151.

    Google Scholar 

  • Hikida, T., Kimura, K., Wada, N., Funabiki, K., & Nakanishi, S. (2010). Distinct roles of synaptic transmission in direct and indirect striatal pathways to reward and aversive behavior. Neuron, 66, 896–907.

    CAS  PubMed  Google Scholar 

  • Hitzeman, N., & Rafii, F. (2009). Dopamine agonists for early Parkinson disease. American Family Physician, 80, 28–30.

    PubMed  Google Scholar 

  • Hobbs, A. J., Higgs, A., & Moncada, S. (1999). Inhibition of nitric oxide synthase as a potential therapeutic target. Annual Review of Pharmacology and Toxicology, 39, 191–220.

    CAS  PubMed  Google Scholar 

  • Hokfelt, T., Fuxe, K., & Goldstein, M. (1973). Immunohistochemical studies on monoamine-containing cell systems. Brain Research, 62, 461–469.

    CAS  PubMed  Google Scholar 

  • Holtz, P. (1959). Role of l-DOPA decarboxylase in the biosynthesis of catecholamines in nervous tissue and the adrenal medulla. Pharmacological Reviews, 11, 317–329.

    CAS  PubMed  Google Scholar 

  • Hornykiewicz, O. (1963). Die topische Lokalisation und das Verhalten von Noradrenalin und Dopamin (3-Hydroxytyramin) in der Substantia nigra des normalen und Parkinsonkranken Menschen. Wien Klin Wschr, 75, 309–312.

    CAS  PubMed  Google Scholar 

  • Hornykiewicz, O. (2002). Dopamine miracle: From brain homogenate to dopamine replacement. Movement Disorders, 17, 501–508.

    PubMed  Google Scholar 

  • Hornykiewicz, O. (2010). A brief history of levodopa. Journal of Neurology, 257, 249–252.

    CAS  Google Scholar 

  • Huot, P., Johnston, T. H., Koprich, J. B., Fox, S. H., & Brotchie, J. M. (2013). The pharmacology of l-DOPA-induced dyskinesia in Parkinson’s disease. Pharmacological Reviews, 65, 171–222.

    CAS  PubMed  Google Scholar 

  • Iravani, M. M., & Jenner, P. (2011). Mechanisms underlying the onset and expression of levodopa-induced dyskinesia and their pharmacological manipulation. Journal of Neural Transmission, 118, 1661–1690.

    CAS  PubMed  Google Scholar 

  • Iravani, M. M., Stockwell, K. A., Tayarani-Binazir, K., Jackson, M. J., Smith, L. A., et al. (2008). Inhibition of neuronal nitric oxide synthase as a novel target for suppression of levodopa-induced dyskinesia in primates. Neuroscience Meeting Planner Society for Neuroscience. Abstract 139.15/M6.

    Google Scholar 

  • Ishizawa, T., Mattila, P., Davies, P., Wang, D., & Dickson, D. W. (2003). Colocalization of tau and alpha-synuclein epitopes in Lewy bodies. Journal of Neuropathology and Experimental Neurology, 62, 389–397.

    CAS  PubMed  Google Scholar 

  • Ito, K., Nagano-Saito, A., Kato, T., et al. (2002). Striatal and extrastriatal dysfunction in Parkinson’s disease with dementia: A 6-[18F]fluoro-l-dopa PET study. Brain, 125, 1358–1365.

    PubMed  Google Scholar 

  • Itokawa, K., Ohkuma, A., Araki, N., Tamura, N., & Shimazu, K. (2006). Effect of l-DOPA on nitric oxide production in striatum of freely mobile mice. Neuroscience Letters, 402, 142–144.

    CAS  PubMed  Google Scholar 

  • Iversen, S. D., & Iversen, L. L. (2007). Dopamine: 50 years in perspective. Trends in Neurosciences, 30, 188–193.

    CAS  PubMed  Google Scholar 

  • Jakes, R., Spillantini, M. G., & Goedert, M. (1994). Identification of two distinct synucleins from human brain. FEBS Letters, 345, 27–32.

    CAS  PubMed  Google Scholar 

  • Jankovic, J., & Stacy, M. (2007). Medical management of levodopa-associated motor complications in patients with Parkinson’s disease. CNS Drugs, 21, 677–692.

    CAS  PubMed  Google Scholar 

  • Jellinger, K. A. (2003). Alpha-synuclein pathology in Parkinson’s and Alzheimer’s disease brain: Incidence and topographic distribution–a pilot study. Acta Neuropathologica, 106, 191–201.

    PubMed  Google Scholar 

  • Jenner, P. (2003). The MPTP-treated primate as a model of motor complications in PD: Primate model of motor complications. Neurology, 61, 4–11.

    Google Scholar 

  • Jenner, P. (2004). Preclinical evidence for neuroprotection with monoamine oxidase-B inhibitors in Parkinson’s disease. Neurology, 63, 13–22.

    Google Scholar 

  • Jenner, P. (2008). Molecular mechanisms of l-DOPA-induced dyskinesia. Nature Reviews Neuroscience, 9, 665–677.

    CAS  PubMed  Google Scholar 

  • Kemp, J. M., & Powell, T. P. (1971). The connexions of the striatum and globus pallidus: Synthesis and speculation. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 262, 441–457.

    CAS  PubMed  Google Scholar 

  • Kish, S. J., Shannak, K., & Hornykiewicz, O. (1988). Uneven pattern of dopamine loss in the striatum of patients with idiopathic Parkinson’s disease. Pathophysiologic and clinical implications. The New England Journal of Medicine, 318, 876–880.

    CAS  PubMed  Google Scholar 

  • Klivenyi, P., & Vecsei, L. (2010). Novel therapeutic strategies in Parkinson’s disease. European Journal of Clinical Pharmacology, 66, 119–125.

    PubMed  Google Scholar 

  • Kravitz, A. V., Freeze, B. S., Parker, P. R., Kay, K., Thwin, M. T., et al. (2010). Regulation of parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry. Nature, 466, 622–626.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Krimer, L. S., Jakab, R. L., & Goldman-Rakic, P. S. (1997). Quantitative three dimensional analysis of the catecholaminergic innervation of identified neurons in the macaque prefrontal cortex. Journal of Neuroscience, 17, 7450–7461.

    CAS  PubMed  Google Scholar 

  • Kurlan, R. (2005). “Levodopa phobia”: A new iatrogenic cause of disability in Parkinson disease. Neurology, 64, 923–924.

    PubMed  Google Scholar 

  • Langley, K. C., Bergson, C., Greengard, P., & Ouimet, C. C. (1997). Co-localization of the D1 dopamine receptor in a subset of DARPP-32-containing neurons in rat caudate-putamen. Neuroscience, 78, 977–983.

    CAS  PubMed  Google Scholar 

  • Lau, A., & Tymianski, M. (2010). Glutamate receptors, neurotoxicity and neurodegeneration. Pflügers Archiv, 460, 525–542.

    CAS  PubMed  Google Scholar 

  • Lees, A. J., Selikhova, M., Andrade, L. A., & Duyckaerts, C. (2008). The black stuff and Konstantin Nikolaevich Tretiakoff. Movement Disorders, 23, 777–783.

    PubMed  Google Scholar 

  • Leiper, J., & Vallance, P. (1999). Biological significance of endogenous methylarginines that inhibit nitric oxide synthases. Cardiovascular Research, 43, 542–548.

    CAS  PubMed  Google Scholar 

  • Ljungdahl, A., Hokfelt, T., Goldstein, M., & Park, D. (1975). Retrograde peroxidase tracing of neurons combined with transmitter histochemistry. Brain Research, 84, 313–319.

    CAS  PubMed  Google Scholar 

  • Lundblad, M., Andersson, M., Winkler, C., Kirik, D., Wierup, N., et al. (2002). Pharmacological validation of behavioural measures of akinesia and dyskinesia in a rat model of Parkinson’s disease. European Journal of Neuroscience, 15, 120–132.

    CAS  PubMed  Google Scholar 

  • Ma, S. Y., Rinne, J. O., Collan, Y., Roytta, M., & Rinne, U. K. (1996). A quantitative morphometrical study of neuron degeneration in the substantia nigra in Parkinson’s disease. Journal of Neurological Sciences, 140, 40–45.

    CAS  Google Scholar 

  • MacAllister, R. J., Parry, H., Kimoto, M., Ogawa, T., Russell, R. J., Hodson, H., Whitley, G. S., & Vallance, P. (1996). Regulation of nitric oxide synthesis by dimethylarginine dimethylaminohydrolase. British Journal of Pharmacology, 119, 1533–1540.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Matsuda, W., Furuta, T., Nakamura, K., Hioki, H., Fujiyama, F., et al. (2009). Single nigrostriatal dopaminergic neurons form widely spread and highly dense axonal arborizations in the neostriatum. Journal of Neuroscience, 29, 444–453.

    CAS  PubMed  Google Scholar 

  • Mayeux, R. (2003). Epidemiology of neurodegeneration. Annual Review of Neuroscience, 26, 81–104.

    CAS  PubMed  Google Scholar 

  • Mink, J. W. (2003). The basal ganglia and involuntary movements: Impaired inhibition of competing motor patterns. Archives of Neurology, 60, 1365–1368.

    PubMed  Google Scholar 

  • Mitkovski, M., Padovan-Neto, F. E., Raisman-Vozari, R., Ginestet, L., da-Silva, C. A., et al. (2012). Investigations into potential extrasynaptic communication between the dopaminergic and nitrergic systems. Frontiers in Physiology, 3, 372.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Molinoff, P. B., & Axelrod, J. (1971). Biochemistry of catecholamines. Annual Review of Biochemistry, 40, 465–500.

    CAS  PubMed  Google Scholar 

  • Mouradian, M. M., Heuser, I. J., Baronti, F., & Chase, T. N. (1990). Modification of central dopaminergic mechanisms by continuous levodopa therapy for advanced Parkinson’s disease. Annals of Neurology, 27, 18–23.

    CAS  PubMed  Google Scholar 

  • Muller, T., & Kuhn, W. (2006). Tolcapone decreases plasma levels of S-adenosyl-l-homocysteine and homocysteine in treated Parkinson’s disease patients. European Journal of Clinical Pharmacology, 62, 447–450.

    PubMed  Google Scholar 

  • Muller, T., & Muhlack, S. (2009). Peripheral COMT inhibition prevents levodopa associated homocysteine increase. Journal of Neural Transmission, 116, 1253–1256.

    PubMed  Google Scholar 

  • Murer, M. G., Dziewczapolski, G., Menalled, L., Garcia, M., Agid, Y., Gershanik, O. S., et al. (1998). Chronic levodopa is not toxic for remaining dopaminergic neurons, but instead promotes their recovery, in rats with moderate nigrostriatal lesions. Annals of Neurology, 43, 561–575.

    CAS  PubMed  Google Scholar 

  • Nestler, E. J., Hyman, S. E., & Malenka, R. C. (2009). Molecular neuropharmacology: A foundation for clinical neuroscience. New York: McGraw-Hill Medical.

    Google Scholar 

  • Novaretti, N., Padovan-Neto, F. E., Tumas, V., da-Silva, C. A., & Del Bel, E. A. (2010). Lack of tolerance for the anti-dyskinetic effects of 7-nitroindazole, a neuronal nitric oxide synthase inhibitor, in rats. Brazilian Journal of Medical and Biological Research, 43(11), 1047–1053.

    CAS  PubMed  Google Scholar 

  • Nussbaum, R. L., & Ellis, C. E. (2003). Alzheimer’s disease and Parkinson’s disease. The New England Journal of Medicine, 348, 1356–1364.

    CAS  PubMed  Google Scholar 

  • Nutt, J. G. (1987). On-off phenomenon: Relation to levodopa pharmacokinetics and pharmacodynamics. Annals of Neurology, 22, 535–540.

    CAS  PubMed  Google Scholar 

  • Nutt, J. G., Gancher, S. T., & Woodward, W. R. (1989). Motor fluctuations in Parkinson’s disease. Annals of Neurology, 25, 633–634.

    CAS  PubMed  Google Scholar 

  • Obeso, J. A., Rodriguez-Oroz, M. C., Chana, P., Lera, G., Rodriguez, M., et al. (2000). The evolution and origin of motor complications in Parkinson’s disease. Neurology 55, S13–20; discussion S1–3.

    Google Scholar 

  • Olanow, C. W., & Tatton, W. G. (1999). Etiology and pathogenesis of Parkinson’s disease. Annual Review of Neuroscience, 22, 123–144.

    CAS  PubMed  Google Scholar 

  • Olanow, C. W., Agid, Y., Mizuno, Y., Albanese, A., Bonuccelli, U., et al. (2004). Levodopa in the treatment of Parkinson’s disease: Current controversies. Movement Disorders, 19, 997–1005.

    PubMed  Google Scholar 

  • Olanow, C. W., Rascol, O., Hauser, R., Feigin, P. D., Jankovic, J., ADAGIO Study Investigators, et al. (2009a). A double-blind, delayed-start trial of rasagiline in Parkinson’s disease. The New England Journal of Medicine, 361, 1268–1278.

    CAS  PubMed  Google Scholar 

  • Olanow, C. W., Stern, M. B., & Sethi, K. (2009b). The scientific and clinical basis for the treatment of Parkinson disease. Neurology, 72, S1–S136.

    PubMed  Google Scholar 

  • Orta Daniel, S. J., & Ulises, R. O. (2008). Stroke of the substance nigra and parkinsonism as first manifestation of systemic lupus erythematosus. Parkinsonism & Related Disorders, 14, 367–369.

    Google Scholar 

  • Padovan-Neto, F. E., Echeverry, M. B., Tumas, V., & Del-Bel, E. A. (2009). Nitric oxide synthase inhibition attenuates l-DOPA-induced dyskinesias in a rodent model of Parkinson’s disease. Neuroscience, 159, 927–935.

    CAS  PubMed  Google Scholar 

  • Padovan-Neto, F. E., Echeverry, M. B. D., Chiavegatto, S., & Del Bel, E. (2011). Nitric oxide synthase inhibitor improves de novo and long-term l-DOPA-induced dyskinesia in hemiparkinsonian rats. Frontiers in Systems Neuroscience, 5, 40.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Parent, M., & Parent, A. (2010). Substantia nigra and Parkinson’s disease: A brief history of their long and intimate relationship. Canadian Journal of Neurological Sciences, 37, 313–319.

    PubMed  Google Scholar 

  • Parkinson, J. (2002). An essay on the shaking palsy. 1817. The Journal of Neuropsychiatry and Clinical Neurosciences, 14, 223–236.

    PubMed  Google Scholar 

  • Parkkinen, L., Soininen, H., & Alafuzoff, I. (2003). Regional distribution of alpha-synuclein pathology in unimpaired aging and Alzheimer disease. Journal of Neuropathology and Experimental Neurology, 62, 363–367.

    CAS  PubMed  Google Scholar 

  • Pate, B. D., Kawamata, T., Yamada, T., McGeer, E. G., Hewitt, K. A., et al. (1993). Correlation of striatal fluorodopa uptake in the MPTP monkey with dopaminergic indices. Annals of Neurology, 34, 331–338.

    CAS  PubMed  Google Scholar 

  • Petros, A., Lamb, G., Leone, A., Moncada, S., Bennett, D., et al. (1994). Effects of a nitric oxide synthase inhibitor in humans with septic shock. Cardiovascular Research, 28(1), 34–39.

    CAS  PubMed  Google Scholar 

  • Pierucci, M., Galati, S., Valentino, M., Di Matteo, V., Benigno, A., et al. (2011). Nitric oxide modulation of the basal ganglia circuitry: Therapeutic implication for Parkinson’s disease and other motor disorders. CNS & Neurological Disorders Drug Targets, 10(7), 777–791.

    CAS  Google Scholar 

  • Polymeropoulos, M. H., Lavedan, C., Leroy, E., Ide, S. E., Dehejia, A., et al. (1997). Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science, 276, 2045–2047.

    CAS  PubMed  Google Scholar 

  • Rees, D. D. (1995). Role of nitric oxide in the vascular dysfunction of septic shock. Biochemical Society Transactions, 23(4), 1025–1029.

    CAS  PubMed  Google Scholar 

  • Rothwell, J. C. (2011). The motor functions of the basal ganglia. Journal of Integrative Neuroscience, 10, 303–315.

    PubMed  Google Scholar 

  • Sanchez, J. J., Abreu, P., & Gonzalez, M. C. (2002). Sodium nitroprusside stimulates l-DOPA release from striatal tissue through nitric oxide and cGMP. European Journal of Pharmacology, 438(1–2), 79–83.

    CAS  PubMed  Google Scholar 

  • Santini, E., Valjent, E., & Fisone, G. (2008). Parkinson’s disease: Levodopa-induced dyskinesia and signal transduction. FEBS Journal, 275(7), 1392–1399.

    CAS  PubMed  Google Scholar 

  • Schapira, A. H., Emre, M., Jenner, P., & Poewe, W. (2009). Levodopa in the treatment of Parkinson’s disease. European Journal of Neurology, 16, 982–989.

    CAS  PubMed  Google Scholar 

  • Schrag, A. (2005). Entacapone in the treatment of Parkinson’s disease. Lancet Neurology, 4, 366–370.

    CAS  PubMed  Google Scholar 

  • Singh, N., Pillay, V., & Choonara, Y. E. (2007). Advances in the treatment of Parkinson’s disease. Progress in Neurobiology, 81, 29–44.

    CAS  PubMed  Google Scholar 

  • Smith, Y., Bennett, B. D., Bolam, J. P., Parent, A., & Sadikot, A. F. (1994). Synaptic relationships between dopaminergic afferents and cortical or thalamic input in the sensorimotor territory of the striatum in monkey. The Journal of Comparative Neurology, 344, 1–19.

    CAS  PubMed  Google Scholar 

  • Snow, B. J., Tooyama, I., McGeer, E. G., et al. (1993). Human positron emission tomographic [18F]fluorodopa studies correlate with dopamine cell counts and levels. Annals of Neurology, 34, 324–330.

    CAS  PubMed  Google Scholar 

  • Spillantini, M. G., Schmidt, M. L., Lee, V. M., Trojanowski, J. Q., Jakes, R., et al. (1997). Alpha-synuclein in Lewy bodies. Nature, 388, 839–840.

    CAS  PubMed  Google Scholar 

  • Steiger, M., Jost, W., Grandas, F., & Van Camp, G. (2009). Risk of valvular heart disease associated with the use of dopamine agonists in Parkinson’s disease: A systematic review. Journal of Neural Transmission, 116, 179–191.

    CAS  PubMed  Google Scholar 

  • Steinert, J. R., Chernova, T., & Forsythe, I. D. (2010). Nitric oxide signaling in brain function, dysfunction, and dementia. The Neuroscientist, 16(4), 435–452.

    CAS  PubMed  Google Scholar 

  • Stocchi, F. (2009). The therapeutic concept of continuous dopaminergic stimulation (CDS) in the treatment of Parkinson’s disease. Parkinsonism & Related Disorders, 15(Suppl 3), S68–S71.

    Google Scholar 

  • Stoessl, A. J., Martin, W. W., McKeown, M. J., & Sossi, V. (2011). Advances in imaging in Parkinson’s disease. Lancet Neurology, 10, 987–1001.

    PubMed  Google Scholar 

  • Sun, H. S., Doucette, T. A., Liu, Y., Fang, Y., Teves, L., et al. (2008). Effectiveness of PSD95 inhibitors in permanent and transient focal ischemia in the rat. Stroke, 39, 2544–2553.

    CAS  PubMed  Google Scholar 

  • Svenningsson, P., Nishi, A., Fisone, G., Girault, J. A., Nairn, A. C., et al. (2004). DARPP-32: An integrator of neurotransmission. Annual Review of Pharmacology and Toxicology, 44, 269–296.

    CAS  PubMed  Google Scholar 

  • Takuma, K., Tanaka, T., Takahashi, T., Hiramatsu, N., Ota, Y., Ago, Y., Matsuda, T. (2012). Neuronal nitric oxide synthase inhibition attenuates the development of L-DOPA-induced dyskinesia in hemi-Parkinsonian rats. European Journal of Pharmacology, 683, 166–173.

    CAS  PubMed  Google Scholar 

  • Tepper, J. M., Wilson, C. J., & Koós, T. (2008). Feedforward and feedback inhibition in neostriatal GABAergic spiny neurons. Brain Research Reviews, 58, 272–281.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Torstenson, R., Hartvig, P., Langstrom, B., Westerberg, G., & Tedroff, J. (1997). Differential effects of levodopa on dopaminergic function in early and advanced Parkinson’s disease. Annals of Neurology, 41, 334–340.

    CAS  PubMed  Google Scholar 

  • Turjanski, N., Lees, A. J., & Brooks, D. J. (1997). In vivo studies on striatal dopamine D1 and D2 site binding in l-dopa-treated Parkinson’s disease patients with and without dyskinesias. Neurology, 49, 717–723.

    CAS  PubMed  Google Scholar 

  • Vallance, P. (2003). Nitric oxide: Therapeutic opportunities. Fundamental and Clinical Pharmacology, 17(1), 1–10.

    CAS  PubMed  Google Scholar 

  • Vallance, P., & Leiper, J. (2002). Blocking NO synthesis: How, where and why? Nature Reviews. Drug Discovery, 1, 939–950.

    CAS  PubMed  Google Scholar 

  • Vingerhoets, F. J., Schulzer, M., Calne, D. B., & Snow, B. J. (1997). Which clinical sign of Parkinson’s disease best reflects the nigrostriatal lesion? Annals of Neurology, 41, 58–64.

    CAS  PubMed  Google Scholar 

  • Whone, A. L., Moore, R. Y., Piccini, P. P., & Brooks, D. J. (2003). Plasticity of the nigropallidal pathway in Parkinson’s disease. Annals of Neurology, 53, 206–213.

    PubMed  Google Scholar 

  • Winkler, C., Kirik, D., Bjorklund, A., & Cenci, M. A. (2002). l-DOPA-induced dyskinesia in the intrastriatal 6-hydroxydopamine model of Parkinson’s disease: Relation to motor and cellular parameters of nigrostriatal function. Neurobiology of Disease, 10, 165–186.

    PubMed  Google Scholar 

  • Wong, K. S., Lu, C. S., Shan, D. E., Yang, C. C., Tsoi, T. H., & Mok, V. (2003). Efficacy, safety, and tolerability of pramipexole in untreated and levodopa-treated patients with Parkinson’s disease. Journal of Neurological Sciences, 216, 81–87.

    CAS  Google Scholar 

  • Wu, R. M., Chen, R. C., & Chiueh, C. C. (2000). Effect of MAO-B inhibitors on MPP+ toxicity in Vivo. Annals of the New York Academy of Sciences, 899, 255–261.

    CAS  PubMed  Google Scholar 

  • Yacoubian, T. A., & Standaert, D. G. (2009). Targets for neuroprotection in Parkinson’s disease. Biochimica et Biophysica Acta, 1792, 676–687.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yan, Z., & Surmeier, D. J. (1996). Muscarinic (m2/m4) receptors reduce N- and P-type Ca2+ currents in rat neostriatal cholinergic interneurons through a fast, membrane-delimited, G-protein pathway. Journal of Neuroscience, 16, 2592–2604.

    CAS  PubMed  Google Scholar 

  • Yuste, J. E., Bermúdez, M., Bernal, F. R., Barcia, C., Martin, J., et al. (2011). NOS inhibitors improve l-DOPA-induced dyskinesias in experimental models of Parkinsonism. Movement Disorders, 26(Suppl 2), S257–S258.

    Google Scholar 

  • Zhou, L., Li, F., Xu, H. B., Luo, C. X., Wu, H. Y., et al. (2010). Treatment of cerebral ischemia by disrupting ischemia-induced interaction of nNOS with PSD-95. Nature Medicine, 16, 1439–1443.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was partially supported by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), Conselho Nacional de Desenvolvimento Científico (CNPQ), Coordenadoria de Aperfeiçoamento de Pessoal (CAPES), Fundação de Apoio à Pesquisa Científica e Tecnológica do Estado de Santa Catarina (FAPESC), CAPES-COFECUB (France/Brazil; 681/2010), FAPESP/INSERM (2008/55092-9), and CAPES/CNPq/FAPs – Linha Pesquisador Visitante Especial/Programa Especial de Cooperacao Internacional/PECI (402658/2012-4). The other authors have no financial or personal conflict of interest related to this study. The authors are grateful to Majid Amar for the preparation of Fig. 2 and to Célia Ap. da Silva and Laure Ginestet for the helpful technical support. We would like to thank MSc Fernando Padovan Neto, MSc Danielle Oliveira Tavares, PhD Roberta Cavalcanti Kwiatkoski, and PhD Nádia Rúbia Ferreira.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rita Raisman-Vozari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Prediger, R.D., Bortolanza, M., de Castro Issy, A.C., dos Santos, B.L., Del Bel, E., Raisman-Vozari, R. (2014). Dopaminergic Neurons in Parkinson’s Disease. In: Kostrzewa, R. (eds) Handbook of Neurotoxicity. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5836-4_7

Download citation

Publish with us

Policies and ethics