Skip to main content

Manganese Neurotoxicity

  • Reference work entry
  • First Online:
Handbook of Neurotoxicity

Abstract

Over the past years there has been considerable progress in our understanding of manganese (Mn)-induced neurotoxicity and its mechanisms. These studies led to changes in Mn safety assessment around the world. However, manganism continues to represent a health concern, especially considering the recent findings linking manganism to Parkinson’s disease (PD). Animal models have been invaluable in these investigations. Findings from these studies are discussed in this chapter within the context of Mn-induced neurotoxicity mechanisms and its role in the etiology of parkinsonism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 549.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson, J. G., Cooney, P. T., & Erikson, K. M. (2007). Brain manganese accumulation is inversely related to gamma-amino butyric acid uptake in male and female rats. Toxicological Sciences, 95, 188–195.

    CAS  PubMed  Google Scholar 

  • Aschner, M. (2000). Manganese: Brain transport and emerging research needs. Environmental Health Perspectives, 108(Suppl 3), 429–432.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Aschner, M., & Gannon, M. (1994). Manganese (Mn) transport across the rat blood–brain barrier: Saturable and transferrin-dependent transport mechanisms. Brain Research Bulletin, 33, 345–349.

    CAS  PubMed  Google Scholar 

  • Aschner, M., & Dorman, D. C. (2006). Manganese: Pharmacokinetics and molecular mechanisms of brain uptake. Toxicological Reviews, 25, 147–154.

    CAS  PubMed  Google Scholar 

  • Aschner, M., Erikson, K. M., Herrero Hernandez, E., & Tjalkens, R. (2009). Manganese and its role in Parkinson’s disease: From transport to neuropathology. Neuromolecular Medicine, 11, 252–266.

    CAS  PubMed  Google Scholar 

  • ATSDR (Agency of Toxic Substances and Disease Registry). (2000). Toxicological profile for manganese. Atlanta: U.S. Department of Health and Human Services Public Health Service.

    Google Scholar 

  • Au, C., Benedetto, A., Anderson, J., Labrousse, A., Erikson, K., Ewbank, J. J., & Aschner, M. (2009). SMF-1, SMF-2 and SMF-3 DMT1 orthologues regulate and are regulated differentially by manganese levels in C. elegans. PloS One, 4, e7792.

    PubMed Central  PubMed  Google Scholar 

  • Baldessarini, R. J., & Tarazi, F. I. (1996). Brain dopamine receptors: A primer on their current status, basic and clinical. Harvard Review of Psychiatry, 3, 301–325.

    CAS  PubMed  Google Scholar 

  • Barbeau, A. (1984). Manganese and extrapyramidal disorders (a critical review and tribute to Dr. George C. Cotzias). Neurotoxicology, 5, 13–35.

    CAS  PubMed  Google Scholar 

  • Bargmann, C. I. (1998). Neurobiology of the Caenorhabditis elegans genome. Science, 282, 2028–2033.

    CAS  PubMed  Google Scholar 

  • Barone, M. C., Sykiotis, G. P., & Bohmann, D. (2011). Genetic activation of Nrf2 signaling is sufficient to ameliorate neurodegenerative phenotypes in a Drosophila model of Parkinson’s disease. Disease Models & Mechanisms, 4, 701–707.

    CAS  Google Scholar 

  • Benedetto, A., Au, C., & Aschner, M. (2009). Manganese-induced dopaminergic neurodegeneration: Insights into mechanisms and genetics shared with Parkinson’s disease. Chemical Reviews, 109, 4862–4884.

    CAS  PubMed  Google Scholar 

  • Benedetto, A., Au, C., Avila, D. S., Milatovic, D., & Aschner, M. (2010). Extracellular dopamine potentiates mn-induced oxidative stress, lifespan reduction, and dopaminergic neurodegeneration in a BLI-3-dependent manner in Caenorhabditis elegans. PLoS Genetics, 6. pii: e1001084. doi:10.1371/journal.pgen.1001084.

    Google Scholar 

  • Bertinet, D. B., Tinivella, M., Balzola, F. A., de Francesco, A., Davini, O., Rizzo, L., Massarenti, P., Leonardi, M. A., & Balzola, F. (2000). Brain manganese deposition and blood levels in patients undergoing home parenteral nutrition. JPEN. Journal of Parenteral and Enteral Nutrition, 24, 223–227.

    CAS  PubMed  Google Scholar 

  • Bird, E. D., Anton, A. H., & Bullock, B. (1984). The effect of manganese inhalation on basal ganglia dopamine concentrations in rhesus monkey. Neurotoxicology, 5, 59–65.

    CAS  PubMed  Google Scholar 

  • Bonilla-Ramirez, L., Jimenez-Del-Rio, M., & Velez-Pardo, C. (2011). Acute and chronic metal exposure impairs locomotion activity in Drosophila melanogaster: A model to study Parkinsonism. Biometals, 24, 1045–1057.

    CAS  PubMed  Google Scholar 

  • Bowman, A. B., Kwakye, G. F., Herrero Hernandez, E., & Aschner, M. (2011). Role of manganese in neurodegenerative diseases. Journal of Trace Elements in Medicine and Biology, 25(4), 191–203.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Butterworth, R. F., Spahr, L., Fontaine, S., & Layrargues, G. P. (1995). Manganese toxicity, dopaminergic dysfunction and hepatic encephalopathy. Metabolic Brain Disease, 10, 259–267.

    CAS  PubMed  Google Scholar 

  • Cai, T., Yao, T., Zheng, G., Chen, Y., Du, K., Cao, Y., Shen, X., Chen, J., & Luo, W. (2010). Manganese induces the overexpression of alpha-synuclein in PC12 cells via ERK activation. Brain Research, 1359, 201–207.

    CAS  PubMed  Google Scholar 

  • Calne, D. B., Chu, N. S., Huang, C. C., Lu, C. S., & Olanow, W. (1994). Manganism and idiopathic parkinsonism: Similarities and differences. Neurology, 44, 1583–1586.

    CAS  PubMed  Google Scholar 

  • Chalela, J. A., Bonillha, L., Neyens, R., & Hays, A. (2011). Manganese encephalopathy: An under-recognized condition in the intensive care unit. Neurocritical Care, 14, 456–458.

    PubMed  Google Scholar 

  • Chance, B. (1965). The energy-linked reaction of calcium with mitochondria. Journal of Biological Chemistry, 240, 2729–2748.

    CAS  PubMed  Google Scholar 

  • Chandra, S. V., Srivastava, R. S., & Shukla, G. S. (1979). Regional distribution of metals and biogenic amines in the brain of monkeys exposed to manganese. Toxicology Letters, 4, 189–192.

    CAS  Google Scholar 

  • Chen, M. K., Lee, J. S., McGlothan, J. L., Furukawa, E., Adams, R. J., Alexander, M., Wong, D. F., & Guilarte, T. R. (2006). Acute manganese administration alters dopamine transporter levels in the non-human primate striatum. Neurotoxicology, 27, 229–236.

    CAS  PubMed  Google Scholar 

  • Choi, J., Levey, A. I., Weintraub, S. T., Rees, H. D., Gearing, M., Chin, L. S., & Li, L. (2004). Oxidative modifications and down-regulation of ubiquitin carboxyl-terminal hydrolase L1 associated with idiopathic Parkinson’s and Alzheimer’s diseases. Journal of Biological Chemistry, 279, 13256–13264.

    CAS  PubMed  Google Scholar 

  • Chua, A. C., & Morgan, E. H. (1997). Manganese metabolism is impaired in the Belgrade laboratory rat. Journal of Comparative Physiology. B, 167, 361–369.

    CAS  Google Scholar 

  • Cooper, J., Bloom, F., & Roth, R. (1996). Dopamine. New York: Oxford University Press.

    Google Scholar 

  • Cotzias, G. C., Horiuchi, K., Fuenzalida, S., & Mena, I. (1968). Chronic manganese poisoning. Clearance of tissue manganese concentrations with persistance of the neurological picture. Neurology, 18, 376–382.

    CAS  PubMed  Google Scholar 

  • Couper, J. (1837). On the effects of black oxide of manganese when inhaled into the lungs. British Annals of Medicine and Pharmacology, 1, 41–42.

    Google Scholar 

  • Criswell, S. R., Perlmutter, J. S., Videen, T. O., Moerlein, S. M., Flores, H. P., Birke, A. M., & Racette, B. A. (2011). Reduced uptake of [(1)F] FDOPA PET in asymptomatic welders with occupational manganese exposure. Neurology, 76, 1296–1301.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Crossgrove, J. S., Allen, D. D., Bukaveckas, B. L., Rhineheimer, S. S., & Yokel, R. A. (2003). Manganese distribution across the blood–brain barrier. I. Evidence for carrier-mediated influx of managanese citrate as well as manganese and manganese transferrin. Neurotoxicology, 24, 3–13.

    CAS  PubMed  Google Scholar 

  • Davidsson, L., Cederblad, A., Lonnerdal, B., & Sandstrom, B. (1989). Manganese retention in man: A method for estimating manganese absorption in man. American Journal of Clinical Nutrition, 49, 170–179.

    CAS  PubMed  Google Scholar 

  • Dharmasaroja, P. (2010). Signal intensity loss on T2-weighted gradient-recalled echo magnetic resonance images in the basal ganglia in a patient with chronic hepatic encephalopathy. The Neurologist, 16, 265–268.

    PubMed  Google Scholar 

  • Dobson, A. W., Erikson, K. M., & Aschner, M. (2004). Manganese neurotoxicity. Annals of the New York Academy of Sciences, 1012, 115–128.

    CAS  PubMed  Google Scholar 

  • Donaldson, J., LaBella, F. S., & Gesser, D. (1981). Enhanced autoxidation of dopamine as a possible basis of manganese neurotoxicity. Neurotoxicology, 2, 53–64.

    CAS  PubMed  Google Scholar 

  • Donaldson, J., McGregor, D., & LaBella, F. (1982). Manganese neurotoxicity: A model for free radical mediated neurodegeneration? Canadian Journal of Physiology and Pharmacology, 60, 1398–1405.

    CAS  PubMed  Google Scholar 

  • Dorman, D. C., Struve, M. F., James, R. A., McManus, B. E., Marshall, M. W., & Wong, B. A. (2001). Influence of dietary manganese on the pharmacokinetics of inhaled manganese sulfate in male CD rats. Toxicological Sciences, 60, 242–251.

    CAS  PubMed  Google Scholar 

  • Dorman, D. C., Struve, M. F., Marshall, M. W., Parkinson, C. U., James, R. A., & Wong, B. A. (2006). Tissue manganese concentrations in young male rhesus monkeys following subchronic manganese sulfate inhalation. Toxicological Sciences, 92, 201–210.

    CAS  PubMed  Google Scholar 

  • Dorman, D. C., Struve, M. F., Norris, A., & Higgins, A. J. (2008). Metabolomic analyses of body fluids after subchronic manganese inhalation in rhesus monkeys. Toxicological Sciences, 106, 46–54.

    CAS  PubMed  Google Scholar 

  • Erikson, K. M., & Aschner, M. (2003). Manganese neurotoxicity and glutamate-GABA interaction. Neurochemistry International, 43, 475–480.

    CAS  PubMed  Google Scholar 

  • Erikson, K. M., Dorman, D. C., Lash, L. H., & Aschner, M. (2007). Manganese inhalation by rhesus monkeys is associated with brain regional changes in biomarkers of neurotoxicity. Toxicological Sciences, 97, 459–466.

    CAS  PubMed  Google Scholar 

  • Eriksson, H., Magiste, K., Plantin, L. O., Fonnum, F., Hedstrom, K. G., Theodorsson-Norheim, E., Kristensson, K., Stalberg, E., & Heilbronn, E. (1987). Effects of manganese oxide on monkeys as revealed by a combined neurochemical, histological and neurophysiological evaluation. Archives of Toxicology, 61, 46–52.

    CAS  PubMed  Google Scholar 

  • Eriksson, H., Tedroff, J., Thuomas, K. A., Aquilonius, S. M., Hartvig, P., Fasth, K. J., Bjurling, P., Langstrom, B., Hedstrom, K. G., & Heilbronn, E. (1992). Manganese induced brain lesions in Macaca fascicularis as revealed by positron emission tomography and magnetic resonance imaging. Archives of Toxicology, 66, 403–407.

    CAS  PubMed  Google Scholar 

  • Feany, M. B., & Bender, W. W. (2000). A Drosophila model of Parkinson’s disease. Nature, 404, 394–398.

    CAS  PubMed  Google Scholar 

  • Felicio, A. C., Shih, M. C., Godeiro-Junior, C., Andrade, L. A., Bressan, R. A., & Ferraz, H. B. (2009). Molecular imaging studies in Parkinson disease: Reducing diagnostic uncertainty. The Neurologist, 15, 6–16.

    PubMed  Google Scholar 

  • Finkelstein, M. M., & Jerrett, M. (2007). A study of the relationships between Parkinson’s disease and markers of traffic-derived and environmental manganese air pollution in two Canadian cities. Environmental Research, 104, 420–432.

    CAS  PubMed  Google Scholar 

  • Finley, J. W., & Davis, C. D. (1999). Manganese deficiency and toxicity: Are high or low dietary amounts of manganese cause for concern? Biofactors, 10, 15–24.

    CAS  PubMed  Google Scholar 

  • Fitsanakis, V. A., Zhang, N., Anderson, J. G., Erikson, K. M., Avison, M. J., Gore, J. C., & Aschner, M. (2008). Measuring brain manganese and iron accumulation in rats following 14 weeks of low-dose manganese treatment using atomic absorption spectroscopy and magnetic resonance imaging. Toxicological Sciences, 103, 116–124.

    CAS  PubMed  Google Scholar 

  • Fleming, M. D., Romano, M. A., Su, M. A., Garrick, L. M., Garrick, M. D., & Andrews, N. C. (1998). Nramp2 is mutated in the anemic Belgrade (b) rat: Evidence of a role for Nramp2 in endosomal iron transport. Proceedings of the National Academy of Sciences of the United States of America, 95, 1148–1153.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Freeland-Graves, J. H., & Lin, P. H. (1991). Plasma uptake of manganese as affected by oral loads of manganese, calcium, milk, phosphorus, copper, and zinc. Journal of the American College of Nutrition, 10, 38–43.

    CAS  PubMed  Google Scholar 

  • Garcia, S. J., Gellein, K., Syversen, T., & Aschner, M. (2007). Iron deficient and manganese supplemented diets alter metals and transporters in the developing rat brain. Toxicological Sciences, 95, 205–214.

    CAS  PubMed  Google Scholar 

  • Garcia-Aranda, J. A., Wapnir, R. A., & Lifshitz, F. (1983). In vivo intestinal absorption of manganese in the rat. Journal of Nutrition, 113, 2601–2607.

    CAS  PubMed  Google Scholar 

  • Gavin, C. E., Gunter, K. K., & Gunter, T. E. (1990). Manganese and calcium efflux kinetics in brain mitochondria. Relevance to manganese toxicity. Biochemical Journal, 266, 329–334.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gitler, A. D., Chesi, A., Geddie, M. L., Strathearn, K. E., Hamamichi, S., Hill, K. J., Caldwell, K. A., Caldwell, G. A., Cooper, A. A., Rochet, J. C., & Lindquist, S. (2009). Alpha-synuclein is part of a diverse and highly conserved interaction network that includes PARK9 and manganese toxicity. Nature Genetics, 41, 308–315.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gorell, J. M., Johnson, C. C., Rybicki, B. A., Peterson, E. L., Kortsha, G. X., Brown, G. G., & Richardson, R. J. (1999). Occupational exposure to manganese, copper, lead, iron, mercury and zinc and the risk of Parkinson’s disease. Neurotoxicology, 20, 239–247.

    CAS  PubMed  Google Scholar 

  • Graumann, R., Paris, I., Martinez-Alvarado, P., Rumanque, P., Perez-Pastene, C., Cardenas, S. P., Marin, P., Diaz-Grez, F., Caviedes, R., Caviedes, P., & Segura-Aguilar, J. (2002). Oxidation of dopamine to aminochrome as a mechanism for neurodegeneration of dopaminergic systems in Parkinson’s disease. Possible neuroprotective role of DT-diaphorase. Polish Journal of Pharmacology, 54, 573–579.

    CAS  PubMed  Google Scholar 

  • Green, D. R., & Reed, J. C. (1998). Mitochondria and apoptosis. Science, 281, 1309–1312.

    CAS  PubMed  Google Scholar 

  • Guilarte, T. R. (2010). Manganese and Parkinson’s disease: A critical review and new findings. Environmental Health Perspectives, 118, 1071–1080.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gunter, T. E., & Pfeiffer, D. R. (1990). Mechanisms by which mitochondria transport calcium. American Journal of Physiology, 258, C755–C786.

    CAS  PubMed  Google Scholar 

  • Hardy, G. (2009). Manganese in parenteral nutrition: Who, when, and why should we supplement? Gastroenterology, 137, S29–S35.

    CAS  PubMed  Google Scholar 

  • Hazell, A. S., & Butterworth, R. F. (1999). Hepatic encephalopathy: An update of pathophysiologic mechanisms. Proceedings of the Society for Experimental Biology and Medicine, 222, 99–112.

    CAS  PubMed  Google Scholar 

  • Hazelwood, L. A., Free, R. B., Cabrera, D. M., Skinbjerg, M., & Sibley, D. R. (2008). Reciprocal modulation of function between the D1 and D2 dopamine receptors and the Na+, K+−ATPase. Journal of Biological Chemistry, 283, 36441–36453.

    CAS  PubMed Central  PubMed  Google Scholar 

  • He, L., Girijashanker, K., Dalton, T. P., Reed, J., Li, H., Soleimani, M., & Nebert, D. W. (2006). ZIP8, member of the solute-carrier-39 (SLC39) metal-transporter family: Characterization of transporter properties. Molecular Pharmacology, 70, 171–180.

    CAS  PubMed  Google Scholar 

  • Huang, C. C., Chu, N. S., Lu, C. S., Wang, J. D., Tsai, J. L., Tzeng, J. L., Wolters, E. C., & Calne, D. B. (1989). Chronic manganese intoxication. Archives of Neurology, 46, 1104–1106.

    CAS  PubMed  Google Scholar 

  • Huang, C. C., Weng, Y. H., Lu, C. S., Chu, N. S., & Yen, T. C. (2003). Dopamine transporter binding in chronic manganese intoxication. Journal of Neurology, 250, 1335–1339.

    CAS  PubMed  Google Scholar 

  • Huang, E., Ong, W. Y., & Connor, J. R. (2004). Distribution of divalent metal transporter-1 in the monkey basal ganglia. Neuroscience, 128, 487–496.

    CAS  PubMed  Google Scholar 

  • Israeli, R., Sculsky, M., & Tiberin, P. (1983). Acute intoxication due to exposure to maneb and zineb. A case with behavioral and central nervous system changes. Scandinavian Journal of Work, Environment & Health, 9, 47–51.

    CAS  Google Scholar 

  • Jankovic, J. (2008). Parkinson’s disease: Clinical features and diagnosis. Journal of Neurology, Neurosurgery & Psychiatry, 79, 368–376.

    CAS  Google Scholar 

  • Kannurpatti, S. S., Joshi, P. G., & Joshi, N. B. (2000). Calcium sequestering ability of mitochondria modulates influx of calcium through glutamate receptor channel. Neurochemical Research, 25, 1527–1536.

    CAS  PubMed  Google Scholar 

  • Keen, C. L., Ensunsa, J. L., Watson, M. H., Baly, D. L., Donovan, S. M., Monaco, M. H., & Clegg, M. S. (1999). Nutritional aspects of manganese from experimental studies. Neurotoxicology, 20, 213–223.

    CAS  PubMed  Google Scholar 

  • Khan, S., Cao, Q., Zheng, Y. M., Huang, Y. Z., & Zhu, Y. G. (2008). Health risks of heavy metals in contaminated soils and food crops irrigated with wastewater in Beijing, China. Environmental Pollution, 152, 686–692.

    CAS  PubMed  Google Scholar 

  • Kim, Y., Kim, J. W., Ito, K., Lim, H. S., Cheong, H. K., Kim, J. Y., Shin, Y. C., Kim, K. S., & Moon, Y. (1999). Idiopathic parkinsonism with superimposed manganese exposure: Utility of positron emission tomography. Neurotoxicology, 20, 249–252.

    CAS  PubMed  Google Scholar 

  • Korsmeyer, S. J., Wei, M. C., Saito, M., Weiler, S., Oh, K. J., & Schlesinger, P. H. (2000). Pro-apoptotic cascade activates BID, which oligomerizes BAK or BAX into pores that result in the release of cytochrome c. Cell Death and Differentiation, 7, 1166–1173.

    CAS  PubMed  Google Scholar 

  • Kulisevsky, J., Pujol, J., Junque, C., Deus, J., Balanzo, J., & Capdevila, A. (1993). MRI pallidal hyperintensity and brain atrophy in cirrhotic patients: Two different MRI patterns of clinical deterioration? Neurology, 43, 2570–2573.

    CAS  PubMed  Google Scholar 

  • Lees, A. J., Hardy, J., & Revesz, T. (2009). Parkinson’s disease. Lancet, 373, 2055–2066.

    CAS  PubMed  Google Scholar 

  • Link, C. D. (2006). C. elegans models of age-associated neurodegenerative diseases: Lessons from transgenic worm models of Alzheimer’s disease. Experimental Gerontology, 41, 1007–1013.

    CAS  PubMed  Google Scholar 

  • Ljung, K., & Vahter, M. (2007). Time to re-evaluate the guideline value for manganese in drinking water? Environmental Health Perspectives, 115, 1533–1538.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lloyd, R. V. (1995). Mechanism of the manganese-catalyzed autoxidation of dopamine. Chemical Research in Toxicology, 8, 111–116.

    CAS  PubMed  Google Scholar 

  • Lockman, P. R., Roder, K. E., & Allen, D. D. (2001). Inhibition of the rat blood–brain barrier choline transporter by manganese chloride. Journal of Neurochemistry, 79, 588–594.

    CAS  PubMed  Google Scholar 

  • Lucaciu, C. M., Dragu, C., Copaescu, L., & Morariu, V. V. (1997). Manganese transport through human erythrocyte membranes. An EPR study. Biochimica et Biophysica Acta, 1328, 90–98.

    CAS  PubMed  Google Scholar 

  • Lucchini, R. G., Albini, E., Benedetti, L., Borghesi, S., Coccaglio, R., Malara, E. C., Parrinello, G., Garattini, S., Resola, S., & Alessio, L. (2007). High prevalence of Parkinsonian disorders associated to manganese exposure in the vicinities of ferroalloy industries. American Journal of Industrial Medicine, 50, 788–800.

    CAS  PubMed  Google Scholar 

  • Lynam, D. R., Roos, J. W., Pfeifer, G. D., Fort, B. F., & Pullin, T. G. (1999). Environmental effects and exposures to manganese from use of methylcyclopentadienyl manganese tricarbonyl (MMT) in gasoline. Neurotoxicology, 20, 145–150.

    CAS  PubMed  Google Scholar 

  • Malecki, E. A. (2001). Manganese toxicity is associated with mitochondrial dysfunction and DNA fragmentation in rat primary striatal neurons. Brain Research Bulletin, 55, 225–228.

    CAS  PubMed  Google Scholar 

  • McDougall, S. A., Reichel, C. M., Farley, C. M., Flesher, M. M., Der-Ghazarian, T., Cortez, A. M., Wacan, J. J., Martinez, C. E., Varela, F. A., Butt, A. E., & Crawford, C. A. (2008). Postnatal manganese exposure alters dopamine transporter function in adult rats: Potential impact on nonassociative and associative processes. Neuroscience, 154, 848–860.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Meeker, J. D., Susi, P., & Flynn, M. R. (2007). Manganese and welding fume exposure and control in construction. Journal of Occupational and Environmental Hygiene, 4, 943–951.

    CAS  PubMed  Google Scholar 

  • Mena, I., Marin, O., Fuenzalida, S., & Cotzias, G. C. (1967). Chronic manganese poisoning. Clinical picture and manganese turnover. Neurology, 17, 128–136.

    CAS  PubMed  Google Scholar 

  • Mendieta Zeron, H., Rodriguez, M. R., Montes, S., & Castaneda, C. R. (2011). Blood manganese levels in patients with hepatic encephalopathy. Journal of Trace Elements in Medicine and Biology, 25, 225.

    CAS  Google Scholar 

  • Mergler, D., Huel, G., Bowler, R., Iregren, A., Belanger, S., Baldwin, M., Tardif, R., Smargiassi, A., & Martin, L. (1994). Nervous system dysfunction among workers with long-term exposure to manganese. Environmental Research, 64, 151–180.

    CAS  PubMed  Google Scholar 

  • Milatovic, D., Yin, Z., Gupta, R. C., Sidoryk, M., Albrecht, J., Aschner, J. L., & Aschner, M. (2007). Manganese induces oxidative impairment in cultured rat astrocytes. Toxicological Sciences, 98, 198–205.

    CAS  PubMed  Google Scholar 

  • Morello, M., Canini, A., Mattioli, P., Sorge, R. P., Alimonti, A., Bocca, B., Forte, G., Martorana, A., Bernardi, G., & Sancesario, G. (2008). Sub-cellular localization of manganese in the basal ganglia of normal and manganese-treated rats An electron spectroscopy imaging and electron energy-loss spectroscopy study. Neurotoxicology, 29, 60–72.

    CAS  PubMed  Google Scholar 

  • Murphy, V. A., Wadhwani, K. C., Smith, Q. R., & Rapoport, S. I. (1991). Saturable transport of manganese(II) across the rat blood–brain barrier. Journal of Neurochemistry, 57, 948–954.

    CAS  PubMed  Google Scholar 

  • Neff, N. H., Barrett, R. E., & Costa, E. (1969). Selective depletion of caudate nucleus dopamine and serotonin during chronic manganese dioxide administration to squirrel monkeys. Experientia, 25, 1140–1141.

    CAS  PubMed  Google Scholar 

  • Negga, R., Rudd, D. A., Davis, N. S., Justice, A. N., Hatfield, H. E., Valente, A. L., Fields, A. S., & Fitsanakis, V. A. (2011a). Exposure to Mn/Zn ethylene-bis-dithiocarbamate and glyphosate pesticides leads to neurodegeneration in Caenorhabditis elegans. Neurotoxicology, 32, 331–341.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Negga, R., Stuart, J. A., Machen, M. L., Salva, J., Lizek, A. J., Richardson, S. J., Osborne, A. S., Mirallas, O., McVey, K. A., & Fitsanakis, V. A. (2011b). Exposure to Glyphosate- and/or Mn/Zn-Ethylene-bis-Dithiocarbamate-containing pesticides leads to degeneration of gamma-aminobutyric acid and dopamine neurons in Caenorhabditis elegans. Neurotoxicity Research, 21, 281.

    PubMed Central  PubMed  Google Scholar 

  • Newland, M. C., & Weiss, B. (1992). Persistent effects of manganese on effortful responding and their relationship to manganese accumulation in the primate globus pallidus. Toxicology and Applied Pharmacology, 113, 87–97.

    CAS  PubMed  Google Scholar 

  • Newland, M. C., Cox, C., Hamada, R., Oberdorster, G., & Weiss, B. (1987). The clearance of manganese chloride in the primate. Fundamental and Applied Toxicology, 9, 314–328.

    CAS  PubMed  Google Scholar 

  • Nong, A., Teeguarden, J. G., Clewell, H. J., 3rd, Dorman, D. C., & Andersen, M. E. (2008). Pharmacokinetic modeling of manganese in the rat IV: Assessing factors that contribute to brain accumulation during inhalation exposure. Journal of Toxicology and Environmental Health. Part A, 71, 413–426.

    CAS  PubMed  Google Scholar 

  • Olanow, C. W. (2004). Manganese-induced parkinsonism and Parkinson’s disease. Annals of the New York Academy of Sciences, 1012, 209–223.

    CAS  PubMed  Google Scholar 

  • Ono, J., Harada, K., Kodaka, R., Sakurai, K., Tajiri, H., Takagi, Y., Nagai, T., Harada, T., Nihei, A., Okada, A., et al. (1995). Manganese deposition in the brain during long-term total parenteral nutrition. Journal of Parenteral and Enteral Nutrition (JPEN), 19, 310–312.

    CAS  Google Scholar 

  • Pal, P. K., Samii, A., & Calne, D. B. (1999). Manganese neurotoxicity: A review of clinical features, imaging and pathology. Neurotoxicology, 20, 227–238.

    CAS  PubMed  Google Scholar 

  • Peneder, T. M., Scholze, P., Berger, M. L., Reither, H., Heinze, G., Bertl, J., Bauer, J., Richfield, E. K., Hornykiewicz, O., & Pifl, C. (2011). Chronic exposure to manganese decreases striatal dopamine turnover in human alpha-synuclein transgenic mice. Neuroscience, 180, 280–292.

    CAS  PubMed  Google Scholar 

  • Pentschew, A., Ebner, F. F., & Kovatch, R. M. (1963). Experimental manganese encephalopathy in monkeys. A preliminary report. Journal of Neuropathology and Experimental Neurology, 22, 488–499.

    CAS  PubMed  Google Scholar 

  • Perl, D. P., & Olanow, C. W. (2007). The neuropathology of manganese-induced Parkinsonism. Journal of Neuropathology and Experimental Neurology, 66, 675–682.

    CAS  PubMed  Google Scholar 

  • Petit, P. X., Susin, S. A., Zamzami, N., Mignotte, B., & Kroemer, G. (1996). Mitochondria and programmed cell death: Back to the future. FEBS Letters, 396, 7–13.

    CAS  PubMed  Google Scholar 

  • Prabhakaran, K., Chapman, G. D., & Gunasekar, P. G. (2011). Alpha-Synuclein overexpression enhances manganese-induced neurotoxicity through the NF-kappaB-mediated pathway. Toxicology Mechanisms and Methods, 21, 435–443.

    CAS  PubMed  Google Scholar 

  • Racette, B. A., McGee-Minnich, L., Moerlein, S. M., Mink, J. W., Videen, T. O., & Perlmutter, J. S. (2001). Welding-related parkinsonism: Clinical features, treatment, and pathophysiology. Neurology, 56, 8–13.

    CAS  PubMed  Google Scholar 

  • Racette, B. A., Antenor, J. A., McGee-Minnich, L., Moerlein, S. M., Videen, T. O., Kotagal, V., & Perlmutter, J. S. (2005). [18F]FDOPA PET and clinical features in parkinsonism due to manganism. Movement Disorders, 20, 492–496.

    PubMed  Google Scholar 

  • Reaney, S. H., & Smith, D. R. (2005). Manganese oxidation state mediates toxicity in PC12 cells. Toxicology and Applied Pharmacology, 205, 271–281.

    CAS  PubMed  Google Scholar 

  • Reichel, C. M., Wacan, J. J., Farley, C. M., Stanley, B. J., Crawford, C. A., & McDougall, S. A. (2006). Postnatal manganese exposure attenuates cocaine-induced locomotor activity and reduces dopamine transporters in adult male rats. Neurotoxicology and Teratology, 28, 323–332.

    CAS  PubMed  Google Scholar 

  • Riccio, A., Mattei, C., Kelsell, R. E., Medhurst, A. D., Calver, A. R., Randall, A. D., Davis, J. B., Benham, C. D., & Pangalos, M. N. (2002). Cloning and functional expression of human short TRP7, a candidate protein for store-operated Ca2+ influx. Journal of Biological Chemistry, 277, 12302–12309.

    CAS  PubMed  Google Scholar 

  • Rivera-Mancia, S., Rios, C., & Montes, S. (2011). Manganese accumulation in the CNS and associated pathologies. Biometals, 24, 811–825.

    CAS  PubMed  Google Scholar 

  • Roth, J. A. (2006). Homeostatic and toxic mechanisms regulating manganese uptake, retention, and elimination. Biological Research, 39, 45–57.

    CAS  PubMed  Google Scholar 

  • Roth, J. A. (2009). Are there common biochemical and molecular mechanisms controlling manganism and parkisonism. Neuromolecular Medicine, 11, 281–296.

    CAS  PubMed  Google Scholar 

  • Salazar, J., Mena, N., Hunot, S., Prigent, A., Alvarez-Fischer, D., Arredondo, M., Duyckaerts, C., Sazdovitch, V., Zhao, L., Garrick, L. M., Nunez, M. T., Garrick, M. D., Raisman-Vozari, R., & Hirsch, E. C. (2008). Divalent metal transporter 1 (DMT1) contributes to neurodegeneration in animal models of Parkinson’s disease. Proceedings of the National Academy of Sciences of the United States of America, 105, 18578–18583.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Santamaria, A. B., Cushing, C. A., Antonini, J. M., Finley, B. L., & Mowat, F. S. (2007). State-of-the-science review: Does manganese exposure during welding pose a neurological risk? Journal of Toxicology and Environmental Health. Part B, Critical Reviews, 10, 417–465.

    CAS  PubMed  Google Scholar 

  • Schmidt, E., Seifert, M., & Baumeister, R. (2007). Caenorhabditis elegans as a model system for Parkinson’s disease. Neurodegenerative Diseases, 4, 199–217.

    PubMed  Google Scholar 

  • Schneider, J. S., Decamp, E., Koser, A. J., Fritz, S., Gonczi, H., Syversen, T., & Guilarte, T. R. (2006). Effects of chronic manganese exposure on cognitive and motor functioning in non-human primates. Brain Research, 1118, 222–231.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Scholte, H. R. (1988). The biochemical basis of mitochondrial diseases. Journal of Bioenergetics and Biomembranes, 20, 161–191.

    CAS  PubMed  Google Scholar 

  • Seth, P. K., & Chandra, S. V. (1984). Neurotransmitters and neurotransmitter receptors in developing and adult rats during manganese poisoning. Neurotoxicology, 5, 67–76.

    CAS  PubMed  Google Scholar 

  • Settivari, R., Levora, J., & Nass, R. (2009). The divalent metal transporter homologues SMF-1/2 mediate dopamine neuron sensitivity in caenorhabditis elegans models of manganism and parkinson disease. Journal of Biological Chemistry, 284, 35758–35768.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sikk, K., Haldre, S., Aquilonius, S. M., & Taba, P. (2011). Manganese-induced parkinsonism due to ephedrone abuse. Parkinsons Disease, 2011, 865319.

    Google Scholar 

  • Smith, R. A., Latchney, L. R., & Senior, A. E. (1985). Tight divalent metal binding to Escherichia coli F1-adenosinetriphosphatase. Complete substitution of intrinsic magnesium by manganese or cobalt and studies of metal binding sites. Biochemistry, 24, 4490–4494.

    CAS  PubMed  Google Scholar 

  • Spahr, L., Butterworth, R. F., Fontaine, S., Bui, L., Therrien, G., Milette, P. C., Lebrun, L. H., Zayed, J., Leblanc, A., & Pomier-Layrargues, G. (1996). Increased blood manganese in cirrhotic patients: relationship to pallidal magnetic resonance signal hyperintensity and neurological symptoms. Hepatology, 24, 1116–1120.

    CAS  PubMed  Google Scholar 

  • Sriram, K., Lin, G. X., Jefferson, A. M., Roberts, J. R., Wirth, O., Hayashi, Y., Krajnak, K. M., Soukup, J. M., Ghio, A. J., Reynolds, S. H., Castranova, V., Munson, A. E., & Antonini, J. M. (2010). Mitochondrial dysfunction and loss of Parkinson’s disease-linked proteins contribute to neurotoxicity of manganese-containing welding fumes. The FASEB Journal, 24, 4989–5002.

    CAS  Google Scholar 

  • Stastny, D., Vogel, R. S., & Picciano, M. F. (1984). Manganese intake and serum manganese concentration of human milk-fed and formula-fed infants. American Journal of Clinical Nutrition, 39, 872–878.

    CAS  PubMed  Google Scholar 

  • Stokes, A. H., Hastings, T. G., & Vrana, K. E. (1999). Cytotoxic and genotoxic potential of dopamine. Journal of Neuroscience Research, 55, 659–665.

    CAS  PubMed  Google Scholar 

  • Takeda, A., Sawashita, J., & Okada, S. (1995). Biological half-lives of zinc and manganese in rat brain. Brain Research, 695, 53–58.

    CAS  PubMed  Google Scholar 

  • Tolosa, E., Wenning, G., & Poewe, W. (2006). The diagnosis of Parkinson’s disease. Lancet Neurology, 5, 75–86.

    PubMed  Google Scholar 

  • Tong, M., Dong, M., & de la Monte, S. M. (2009). Brain insulin-like growth factor and neurotrophin resistance in Parkinson’s disease and dementia with Lewy bodies: Potential role of manganese neurotoxicity. Journal of Alzheimer’s Disease, 16, 585–599.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ulmer, T. S., & Bax, A. (2005). Comparison of structure and dynamics of micelle-bound human alpha-synuclein and Parkinson disease variants. Journal of Biological Chemistry, 280, 43179–43187.

    CAS  PubMed  Google Scholar 

  • Van Swinderen, B., & Andretic, R. (2011). Dopamine in Drosophila: Setting arousal thresholds in a miniature brain. Proceedings: Biological Sciences, 278, 906–913.

    PubMed Central  Google Scholar 

  • Verity, M. A. (1999). Manganese neurotoxicity: A mechanistic hypothesis. Neurotoxicology, 20, 489–497.

    CAS  PubMed  Google Scholar 

  • von Campenhausen, S., Bornschein, B., Wick, R., Botzel, K., Sampaio, C., Poewe, W., Oertel, W., Siebert, U., Berger, K., & Dodel, R. (2005). Prevalence and incidence of Parkinson’s disease in Europe. European Neuropsychopharmacology, 15, 473–490.

    Google Scholar 

  • Wang, D., & Xing, X. (2008). Assessment of locomotion behavioral defects induced by acute toxicity from heavy metal exposure in nematode Caenorhabditis elegans. Journal of Environmental Sciences (China), 20, 1132–1137.

    CAS  Google Scholar 

  • Wasserman, G. A., Liu, X., Parvez, F., Ahsan, H., Levy, D., Factor-Litvak, P., Kline, J., van Geen, A., Slavkovich, V., LoIacono, N. J., Cheng, Z., Zheng, Y., & Graziano, J. H. (2006). Water manganese exposure and children’s intellectual function in Araihazar, Bangladesh. Environmental Health Perspectives, 114, 124–129.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Weissenborn, K., Ehrenheim, C., Hori, A., Kubicka, S., & Manns, M. P. (1995). Pallidal lesions in patients with liver cirrhosis: Clinical and MRI evaluation. Metabolic Brain Disease, 10, 219–231.

    CAS  PubMed  Google Scholar 

  • Yin, Z., Aschner, J. L., dos Santos, A. P., & Aschner, M. (2008). Mitochondrial-dependent manganese neurotoxicity in rat primary astrocyte cultures. Brain Research, 1203, 1–11.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yin, Z., Jiang, H., Lee, E. S., Ni, M., Erikson, K. M., Milatovic, D., Bowman, A. B., & Aschner, M. (2010). Ferroportin is a manganese-responsive protein that decreases manganese cytotoxicity and accumulation. Journal of Neurochemistry, 112, 1190–1198.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zayed, J., Thibault, C., Gareau, L., & Kennedy, G. (1999). Airborne manganese particulates and methylcyclopentadienyl manganese tricarbonyl (MMT) at selected outdoor sites in Montreal. Neurotoxicology, 20, 151–157.

    CAS  PubMed  Google Scholar 

  • Zhang, S., Fu, J., & Zhou, Z. (2004). In vitro effect of manganese chloride exposure on reactive oxygen species generation and respiratory chain complexes activities of mitochondria isolated from rat brain. Toxicology In Vitro, 18, 71–77.

    PubMed  Google Scholar 

  • Zlotkin, S. H., Atkinson, S., & Lockitch, G. (1995). Trace elements in nutrition for premature infants. Clinics in Perinatology, 22, 223–240.

    CAS  PubMed  Google Scholar 

  • Zoratti, M., & Szabo, I. (1995). The mitochondrial permeability transition. Biochimica et Biophysica Acta, 1241, 139–176.

    PubMed  Google Scholar 

Download references

Acknowledgments

The authors are thankful to the funding grants NIH R01 ES 07331 (MA), INCT-EN, CAPES, CNPq, and FAPERGS (DSA, RLP, VF, and JBTR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daiana Silva Ávila .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Ávila, D.S., Puntel, R.L., Folmer, V., Rocha, J.B.T., dos Santos, A.P.M., Aschner, M. (2014). Manganese Neurotoxicity. In: Kostrzewa, R. (eds) Handbook of Neurotoxicity. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5836-4_3

Download citation

Publish with us

Policies and ethics