Skip to main content

Mechanisms of Dopamine Oxidation and Parkinson’s Disease

  • Reference work entry
  • First Online:
Handbook of Neurotoxicity

Abstract

Dopamine’s ability to oxidize to aminochrome explains why this molecule is both an essential neurotransmitter for movement control and a neurotoxic compound that induces toxicity and apoptosis in cell lines. Dopamine spontaneously oxidizes to aminochrome in the presence of oxygen due to the protons on the dopamine hydroxyl groups that are dissociated when dopamine is in the cytosol (pH 7.4). Dopamine oxidation is prevented by vesicular monoaminergic transporter-2 (VMAT-2) that takes up dopamine into the monoaminergic synaptic vesicles where the low pH prevents dopamine oxidation. Dopamine in the cytosol can also be degraded by monoamine oxidase (MAO) and catechol ortho-methyltransferase (COMT) soluble isoform. However, under certain unknown conditions dopamine oxidize to aminochrome, the precursor of neuromelanin, since the neuromelanin pigment is found in the human substantia nigra. Aminochrome participates in two neurotoxic reactions: (i) the one-electron reduction of aminochrome, which is catalyzed by flavoenzymes that use NADH or NADPH as electron donors. This reaction produces leukoaminochrome o-semiquinone radical, which is extremely reactive with oxygen that autoxidizes, depleting both NADH and O2 required for ATP synthesis when the flavoenzymes use NADH; and (ii) aminochrome forms adducts with proteins such as alpha-synuclein-inducing and alpha-synuclein-stabilizing neurotoxic protofibrils. In addition, aminochrome inactivate parkin an E3 ubiquitin ligase of proteasomal system, complexes I and III of electron transport chain, tyrosine hydroxylase, actin, and α- and β-tubulin. Aminochrome is also able to participate in three neuroprotective reactions such as (i) polymerization to neuromelanin, which is a pigment localized in substantia nigra and is present in normal subjects; (ii) aminochrome two-electron reduction to leukoaminochrome catalyzed by DT-diaphorase, which prevents aminochrome neurotoxic reactions; and (iii) glutathione conjugation of aminochrome catalyzed by glutathione S-transferase M2-2. The role of aminochrome in the degeneration of dopaminergic neurons in Parkinson’s disease is discussed. Aminochrome may induce the focal neurodegeneration of dopaminergic neurons through mechanisms involving mitochondrial dysfunction, protein aggregation, oxidative stress, and protein degradation dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 549.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AADC:

Aromatic amino acid decarboxylase

COMT:

Catechol ortho-methyltransferase

GST M2-2:

Glutathione S-transferase M2-2

l-dopa:

l-dihydroxyphenylalanine

MAO:

Monoamine oxidases

TH:

Tyrosine hydroxylase

VMAT-2:

Vesicular monoaminergic transporter-2

References

  • Abbas, N., Lücking, C. B., Ricard, S., Dürr, A., Bonifati, V., De Michele, G., Bouley, S., Vaughan, J. R., Gasser, T., Marconi, R., Broussolle, E., Brefel-Courbon, C., Harhangi, B. S., Oostra, B. A., Fabrizio, E., Böhme, G. A., Pradier, L., Wood, N. W., Filla, A., Meco, G., Denefle, P., Agid, Y., & Brice, A. (1999). A wide variety of mutations in the parkin gene are responsible for autosomal recessive parkinsonism in Europe. French Parkinson’s Disease Genetics Study Group and the European Consortium on Genetic Susceptibility in Parkinson’s disease. Human Molecular Genetics, 8, 567–574.

    Article  CAS  PubMed  Google Scholar 

  • Arriagada, A., Paris, I., Sanchez de las Matas, M. J., Martinez-Alvarado, P., Cardenas, S., Castañeda, P., Graumann, R., Perez-Pastene, C., Olea-Azar, C., Couve, E., Herrero, M. T., Caviedes, P., & Segura-Aguilar, J. (2004). On the neurotoxicity of leukoaminochrome o-semiquinone radical derived of dopamine oxidation: Mitochondria damage, necrosis and hydroxyl radical formation. Neurobiology of Disease, 16, 468–477.

    Article  CAS  PubMed  Google Scholar 

  • Bach, A. W. J., Lan, N. C., Johnson, D. L., Abell, C. W., Bemkenek, M. E., Kwan, S.-W., Seeburg, P. H., & Shih, J. C. (1988). CDNA cloning of human liver monoamine oxidase A and B: Molecular basis of differences in enzymatic properties. Proceedings of the National Academy of Sciences, 85, 4934–4938.

    Article  CAS  Google Scholar 

  • Baez, S., Linderson, Y., & Segura-Aguilar, J. (1995). Superoxide dismutase and catalase enhance autoxidation during one-electron reduction of aminochrome by NADPH-cytochrome P-450 reductase. Biochemical and Molecular Medicine, 54, 12–18.

    Article  CAS  PubMed  Google Scholar 

  • Baez, S., Segura-Aguilar, J., Widersten, M., Johansson, A. S., & Mannervik, B. (1997). Glutathione transferases catalyse the detoxication of oxidized metabolites (o-quinones) of catecholamines and may serve as an antioxidant system preventing degenerative cellular processes. Biochemistry Journal, 324(Pt 1), 25–28.

    CAS  Google Scholar 

  • Bortolato, M., Chen, K., & Shih, J. C. (2008). Monoamine oxidase inactivation: From pathophysiology to therapeutics. Advanced Drug Delivery Reviews, 60, 1527–1533.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Braak, H., Ghebremedhin, E., Rüb, U., Bratzke, H., & Del Tredici, K. (2004). Stages in the development of Parkinson’s disease-related pathology. Cell and Tissue Research, 318, 121–134.

    Article  PubMed  Google Scholar 

  • Cardenas, S. P., Perez-Pastene, C., Couve, E., & Segura-Aguilar, J. (2008). The DT-diaphorase prevents the aggregation of α-synuclein induced by aminochrome. Neurotoxicity Research, 13, 136.

    Google Scholar 

  • Cartier, E. A., Parra, L. A., Baust, T. B., Quiroz, M., Salazar, G., Faundez, V., Egaña, L., & Torres, G. E. (2010). A biochemical and functional protein complex involving dopamine synthesis and transport into synaptic vesicles. Journal of Biological Chemistry, 151, 1957–1966.

    Article  Google Scholar 

  • Carstam, R., Brinck, C., Hindemith-Augustsson, A., Rorsman, H., & Rosengren, E. (1991). The neuromelanin of the human substantia nigra. Biochimica et Biophysica Acta, 1097(2), 152–160.

    Article  CAS  PubMed  Google Scholar 

  • Chaudhry, F. A., Edwards, R. H., & Fonnum, F. (2008). Vesicular neurotransmitter transporters as targets for endogenous and exogenous toxic substances. Annual Review of Pharmacology and Toxicology, 48, 277–301.

    Article  CAS  PubMed  Google Scholar 

  • Chen, J., Song, J., Yuan, P., Tian, Q., Ji, Y., Ren-Patterson, R., Liu, G., Sei, Y., & Weinberger, D. R. (2011). Orientation and cellular distribution of membrane-bound catechol-O-methyltransferase in cortical neurons: Implications for drug development. Journal of Biological Chemistry, 286, 34752–34760.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cheng, F. C., Kuo, J. S., Chia, L. G., & Dryhurst, G. (1996). Elevated 5-S-cysteinyldopamine/ homovanillic acid ratio and reduced homovanillic acid in cerebrospinal fluid: Possible markers for and potential insights into the pathoetiology of Parkinson’s disease. Journal of Neural Transmission, 103, 433–446.

    Article  CAS  PubMed  Google Scholar 

  • Conway, K. A., Rochet, J. C., Bieganski, R. M., & Lansbury, P. T., Jr. (2001). Kinetic stabilization of the a-synuclein protofibril by a dopamine- α-synuclein adduct. Science, 294, 1346–1349.

    Article  CAS  PubMed  Google Scholar 

  • Corti, O., Lesage, S., & Brice, A. (2011). What genetics tells us about the causes and mechanisms of Parkinson’s disease. Physiological Reviews, 91, 1161–1218.

    Article  CAS  PubMed  Google Scholar 

  • Cuervo, A. M., Wong, E. S., & Martinez-Vicente, M. (2010). Protein degradation, aggregation, and misfolding. Movement Disorders, 25(Suppl 1), S49–S54.

    Article  PubMed  Google Scholar 

  • Dagnino-Subiabre, A., Cassels, B. K., Baez, S., Johansson, A. S., Mannervik, B., & Segura-Aguilar, J. (2000). Glutathione transferase M2-2 catalyzes conjugation of dopamine and dopa o-quinones. Biochemical and Biophysical Research Communications, 274, 32–36.

    Article  CAS  PubMed  Google Scholar 

  • Díaz-Véliz, G., Paris, I., Mora, S., Raisman-Vozari, R., & Segura-Aguilar, J. (2008). Copper neurotoxicity in rat substantia nigra and striatum is dependent on DT-diaphorase inhibition. Chemical Research in Toxicology, 21, 1180–1185.

    Article  PubMed  Google Scholar 

  • Fasano, M., Bergamasco, B., & Lopiano, L. (2006). Is neuromelanin changed in Parkinson’s disease? Investigations by magnetic spectroscopies. Journal of Neural Transmission, 113, 769–774.

    Article  CAS  PubMed  Google Scholar 

  • Foppoli, C., Coccia, R., Cini, C., & Rosei, M. A. (1997). Catecholamines oxidation by xanthine oxidase. Biochimica et Biophysica Acta, 1334, 200–206.

    Article  CAS  PubMed  Google Scholar 

  • Fuentes, P., Paris, I., Nassif, M., Caviedes, P., & Segura-Aguilar, J. (2007). Inhibition of VMAT-2 and DT-diaphorase induce cell death in a substantia nigra-derived cell line – An experimental cell model for dopamine toxicity studies. Chemical Research in Toxicology, 20, 776–783.

    Article  CAS  PubMed  Google Scholar 

  • Galzigna, L., De Iuliis, A., & Zanatta, L. (2000). Enzymatic dopamine peroxidation in substantia nigra of human brain. Clinica Chimica Acta, 300, 131–138.

    Article  CAS  Google Scholar 

  • Gerlach, M., Double, K. L., Ben-Shachar, D., Zecca, L., Youdim, M. B., & Riederer, P. (2003). Neuromelanin and its interaction with iron as a potential risk factor for dopaminergic neurodegeneration underlying Parkinson’s disease. Neurotoxicity Research, 5, 35–44.

    Article  PubMed  Google Scholar 

  • Graham, D. G., Tiffany, S. M., Bell, W. R., Jr., & Gutknecht, W. F. (1978). Autoxidation versus covalent binding of autoxidation versus covalent binding of quinones as the mechanism of toxicity of dopamine, 6-hydroxydopamine, and related compounds toward C1300 neuroblastoma cells in vitro. Molecular Pharmacology, 14, 644–653.

    CAS  PubMed  Google Scholar 

  • Guillot, T. S., & Miller, G. W. (2009). Protective actions of the vesicular monoamine transporter 2 (VMAT2) in monoaminergic neurons. Molecular Neurobiology, 39(2), 149–170. doi:10.1007/s12035-009-8059-y.

    Article  CAS  PubMed  Google Scholar 

  • Hastings, T. G. (1995). Enzymatic oxidation of dopamine: The role of prostaglandin H synthase. Journal of Neurochemistry, 64, 919–924.

    Article  CAS  PubMed  Google Scholar 

  • Hattori, N., Matsumine, H., Asakawa, S., Kitada, T., Yoshino, H., Elibol, B., Brookes, A. J., Yamamura, Y., Kobayashi, T., Wang, M., Yoritaka, A., Minoshima, S., Shimizu, N., & Mizuno, Y. (1998). Point mutations (Thr240Arg and Gln311Stop) [correction of Thr240Arg and Ala311Stop] in the Parkin gene. Biochemical and Biophysical Research Communications, 249, 754–758.

    Article  CAS  PubMed  Google Scholar 

  • Hawkes, C. H., Del Tredici, K., & Braak, H. (2010). A timeline for Parkinson’s disease. Parkinsonism & Related Disorders, 16, 79–84.

    Article  Google Scholar 

  • Hong, L., & Simon, J. D. (2007). Current understanding of the binding sites, capacity, affinity, and biological significance of metals in melanin. The Journal of Physical Chemistry. Series, B, 111, 7938–7947.

    Article  CAS  Google Scholar 

  • Ito, S., Kato, T., Maruta, K., Fujita, K., & Kurahashi, T. (1984). Determination of DOPA, dopamine, and 5-S-cysteinyl-DOPA in plasma, urine, and tissue samples by high-performance liquid chromatography with electrochemical detection. Journal of Chromatography, 311, 154–159.

    Article  CAS  PubMed  Google Scholar 

  • Jimenez, M., Garcia-Carmona, F., Garcia-Canovas, F., Iborra, J. L., Lozano, J. A., & Martinez, F. (1984). Chemical intermediates in dopamine oxidation by tyrosinase, and kinetic studies of the process. Archives of Biochemistry and Biophysics, 235, 438–448.

    Article  CAS  PubMed  Google Scholar 

  • Kitada, T., Asakawa, S., Hattori, N., Matsumine, H., Yamamura, Y., Minoshima, S., Yokochi, M., Mizuno, Y., & Shimizu, N. (1998). Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature, 392, 605–608.

    Article  CAS  PubMed  Google Scholar 

  • Knoth, J., Zallakian, M., & Njus, D. (1981). Stoichiometry of H+-linked dopamine transport in chromaffin granule ghosts. Biochemistry, 20(23), 6625–6629.

    Article  CAS  PubMed  Google Scholar 

  • Kuhn, D. M., & Arthur, R., Jr. (1998). Dopamine inactivates tryptophan hydroxylase and forms a redox-cycling quinoprotein: Possible endogenous toxin to serotonin neurons. Journal of Neuroscience, 18, 7111–7117.

    CAS  PubMed  Google Scholar 

  • LaVoie, M. J., Ostaszewski, B. L., Weihofen, A., Schlossmacher, M. G., & Selkoe, D. J. (2005). Dopamine covalently modifies and functionally inactivates parkin. Nature Medicine, 11, 1159–1161.

    Article  Google Scholar 

  • Linert, W., Herlinger, E., Jameson, R. F., Kienzl, E., Jellinger, K., & Youdim, M. B. (1996). Dopamine, 6-hydroxydopamine, iron, and dioxygen – Their mutual interactions and possible implication in the development of Parkinson’s disease. Biochimica et Biophysica Acta, 1316, 160–168.

    Article  PubMed  Google Scholar 

  • Lozano, J., Muñoz, P., Nore, B. F., Ledoux, S., & Segura-Aguilar, J. (2010). Stable expression of short interfering RNA for DT-diaphorase induces neurotoxicity. Chemical Research in Toxicology, 23, 1492–1496.

    Article  CAS  PubMed  Google Scholar 

  • Marin, C., & Obeso, J. A. (2010). Catechol-O-methyltransferase inhibitors in preclinical models as adjuncts of l-dopa treatment. International Review of Neurobiology, 95, 191–205.

    Article  CAS  PubMed  Google Scholar 

  • McNaught, K. S., Perl, D. P., Brownell, A. L., & Olanow, C. W. (2004). Systemic exposure to proteasome inhibitors causes a progressive model of Parkinson’s disease. Annals of Neurology, 56, 149–162.

    Article  CAS  PubMed  Google Scholar 

  • Monastyrska, I., Rieter, E., Klionsky, D. J., & Reggiori, F. (2009). Multiple roles of the cytoskeleton in autophagy. Biological Reviews of the Cambridge Philosophical Society, 84, 431–448.

    Article  PubMed Central  PubMed  Google Scholar 

  • Muñoz, P., Paris, I., Sanders, L. H., Greenamyre, J. T., & Segura-Aguilar, J. (2012). Overexpression of VMAT-2 and DT-diaphorase protects substantia nigra-derived cells against aminochrome neurotoxicity. Biochimica et Biophysica Acta, 1822(7), 1125–1136. doi:10.1016/j.bbadis.2012.03.010.

    Article  PubMed  Google Scholar 

  • Myöhänen, T. T., Schendzielorz, N., & Männistö, P. T. (2010). Distribution of catechol-O-methyltransferase (COMT) proteins and enzymatic activities in wild-type and soluble COMT deficient mice. Journal of Neurochemistry, 113, 1632–1643.

    PubMed  Google Scholar 

  • Naoi, M., Maruyama, W., Yi, H., Yamaoka, Y., Shamoto-Nagai, M., Akao, Y., Gerlach, M., Tanaka, M., & Riederer, P. (2008). Neuromelanin selectively induces apoptosis in dopaminergic SH-SY5Y cells by deglutathionylation in mitochondria: Involvement of the protein and melanin component. Journal of Neurochemistry, 105, 2489–2500.

    Article  CAS  PubMed  Google Scholar 

  • Napolitano, A., Manini, P., & d'Ischia, M. (2011). Oxidation chemistry of catecholamines and neuronal degeneration: an update. Current Medicinal Chemistry, 18(12), 1832–1845.

    Article  CAS  PubMed  Google Scholar 

  • Norris, E. H., Giasson, B. I., Hodara, R., Xu, S., Trojanowski, J. Q., Ischiropoulos, H., & Lee, V. M. (2005). Reversible inhibition of alpha-synuclein fibrillization by dopaminochrome – Mediated conformational alterations. Journal of Biological Chemistry, 280, 21212–21219.

    Article  CAS  PubMed  Google Scholar 

  • Paris, I., Dagnino-Subiabre, A., Marcelain, K., Bennett, L. B., Caviedes, P., Caviedes, R., Olea-Azar, C., & Segura-Aguilar, J. (2001). Copper neurotoxicity is dependent on dopamine-mediated copper uptake and one-electron reduction of aminochrome in a rat substantia nigra neuronal cell line. Journal of Neurochemistry, 77, 519–529.

    Article  CAS  PubMed  Google Scholar 

  • Paris, I., Martinez-Alvarado, P., Perez-Pastene, C., Vieira, M. N., Olea-Azar, C., Raisman-Vozari, R., Cardenas, S., Graumann, R., Caviedes, P., & Segura-Aguilar, J. (2005a). Monoamine transporter inhibitors and norepinephrine reduce dopamine-dependent iron dependent iron toxicity in cells derived from the substantia nigra. Journal of Neurochemistry, 92, 1021–1032.

    Article  CAS  PubMed  Google Scholar 

  • Paris, I., Martinez-Alvarado, P., Cardenas, S., Perez-Pastene, C., Graumann, R., Fuentes, P., Olea-Azar, C., Caviedes, P., & Segura-Aguilar, J. (2005b). Dopamine-dependent iron toxicity in cells derived from rat hypothalamus. Chemical Research in Toxicology, 18, 415–419.

    Article  CAS  PubMed  Google Scholar 

  • Paris, I., Perez-Pastene, C., Couve, E., Caviedes, P., Ledoux, S., & Segura-Aguilar, J. (2009). Copper dopamine complex induces mitochondrial autophagy preceding caspase-independent apoptotic cell death. Journal of Biological Chemistry, 284, 13306–13315.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Paris, I., Perez-Pastene, C., Cardenas, S., Iturriaga-Vasquez, P., Muñoz, P., Couve, E., Caviedes, P., & Segura-Aguilar, J. (2010). Aminochrome induces disruption of actin, alpha-, and beta-tubulin cytoskeleton networks in substantia-nigra-derived cell line. Neurotoxicity Research, 18, 82–92.

    Article  PubMed  Google Scholar 

  • Paris, I., Muñoz, P., Huenchuguala, S., Couve, E., Sanders, L. H., Greenamyre, J. T., Caviedes, P., & Segura-Aguilar, J. (2011). Autophagy protects against aminochrome-induced cell death in substantia nigra-derived cell line. Toxicological Sciences, 121, 376–388.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pezzella, A., Crescenzi, O., Natangelo, A., Panzella, L., Napolitano, A., Navaratnam, S., Edge, R., Land, E. J., Barone, V., & D’Ischia, M. (2007). Chemical, pulse radiolysis and density functional studies of a new, labile 5,6-indolequinone and its semiquinone. Journal of Organic Chemistry, 72, 1595–1603.

    Article  CAS  PubMed  Google Scholar 

  • Polymeropoulos, M. H., Lavedan, C., Leroy, E., Ide, S. E., Dehejia, A., Dutra, A., Pike, B., Root, H., Rubenstein, J., Boyer, R., Stenroos, E. S., Chandrasekharappa, S., Athanassiadou, A., Papapetropoulos, T., Johnson, W. G., Lazzarini, A. M., Duvoisin, R. C., Di Iorio, G., Golbe, L. I., & Nussbaum, R. L. (1997). Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science, 276, 2045–2047.

    Article  CAS  PubMed  Google Scholar 

  • Rosengren, E., Linder-Eliasson, E., & Carlsson, A. (1985). Detection of 5-S-cysteinyldopamine in human brain. Journal of Neural Transmission, 63, 247–253.

    Article  CAS  PubMed  Google Scholar 

  • Saura, J., Luque, J. M., Cesura, A. M., Da Prada, M., Chan-Palay, V., Huber, G., Loffler, J., & Richards, J. G. (1994). Increased monoamine oxidase B activity in plaque-associated astrocytes of Alzheimer brains revealed by quantitative enzyme radioautography. Neuroscience, 62, 15–30.

    Article  CAS  PubMed  Google Scholar 

  • Schapira, A. H. (2011). Mitochondrial pathology in Parkinson’s disease. The Mount Sinai Journal of Medicine, 78, 872–881.

    Article  Google Scholar 

  • Schapira, A. H., & Jenner, P. (2011). Etiology and pathogenesis of Parkinson’s disease. Movement Disorders, 26, 1049–1055.

    Article  PubMed  Google Scholar 

  • Schendzielorz, N., Rysa, A., Reenila, I., Raasmaja, A., & Mannisto, P. T. (2011). Complex estrogenic regulation of catechol-O-methyltransferase (COMT) in rats. Journal of Physiology and Pharmacology, 62, 483–490.

    CAS  PubMed  Google Scholar 

  • Schultzberg, M., Segura-Aguilar, J., & Lind, C. (1988). Distribution of DT diaphorase in the rat brain: Biochemical and immunohistochemical studies. Neuroscience, 27(3), 763–776.

    Article  CAS  PubMed  Google Scholar 

  • Segura-Aguilar, J. (1996). Peroxidase activity of liver microsomal vitamin D 25-hydroxylase and cytochrome P450 1A2 catalyzes 25-hydroxylation of vitamin D3 and oxidation of dopamine to aminochrome. Biochemical and Molecular Medicine, 58, 122–129.

    Article  CAS  PubMed  Google Scholar 

  • Segura-Aguilar, J., Baez, S., Widersten, M., Welch, C. J., & Mannervik, B. (1997). Human class Mu glutathione transferases, in particular isoenzyme M2-2, catalyze detoxication of the dopamine metabolite aminochrome. Journal of Biological Chemistry, 272(9), 5727–5731.

    Article  CAS  PubMed  Google Scholar 

  • Segura-Aguilar, J., & Lind, C. (1989). On the mechanism of Mn3+ induced neurotoxicity of dopamine: Prevention of quinone derived oxygen toxicity by DT-diaphorase and superoxide dismutase. Chemico-Biological Interactions, 72, 309–324.

    Article  CAS  PubMed  Google Scholar 

  • Segura-Aguilar, J., Metodiewa, D., & Welch, C. (1998). Metabolic activation of dopamine o-quinones to o-semiquinones by NADPH cytochrome P450 reductase may play an important role in oxidative stress and apoptotic effects. Biochimica et Biophysica Acta, 1381, 1–6.

    Article  CAS  PubMed  Google Scholar 

  • Segura-Aguilar, J., Cardenas, S., Riveros, A., Fuentes-Bravo, P., Lozano, J., Graumann, R., Paris, I., Nassif, M., & Caviedes, P. (2006). DT-diaphorase prevents the formation of alpha-synuclein adducts with aminochrome. Society for Neuroscience: Abstract Archive, 824, 17.

    Google Scholar 

  • Shen, X. M., Xia, B., Wrona, M. Z., & Dryhurst, G. (1996). Synthesis, redox properties, in vivo formation, and neurobehavioral effects of N-acetylcysteinyl conjugates of dopamine: possible metabolites of relevance to Parkinson’s disease. Chemical Research in Toxicology, 9, 1117–1126.

    Article  CAS  PubMed  Google Scholar 

  • Shih, J. C., Grimsby, J., & Chen, K. (1997). Molecular biology of monoamine oxidase A and B: Their role in the degradation of serotonin. In H. G. Baumgarten & M. Gothert (Eds.), Handbook of experimental pharmacology (Serotoninergic neurons and 5-HT receptors in the CNS, Vol. 129, pp. 655–670). Berlin: Springer.

    Google Scholar 

  • Strolin-Benedetti, M., Dostert, P., & Tipton, K. F. (1992). Developmental aspects of the monoamine-degrading enzyme monoamine oxidase. Developmental Pharmacology and Therapeutics, 18, 191–200.

    CAS  PubMed  Google Scholar 

  • Tan, E. K., Cheah, S. Y., Fook-Chong, S., Yew, K., Chandran, V. R., Lum, S. Y., & Yi, Z. (2005). Functional COMT variant predicts response to high dose pyridoxine in Parkinson’s disease. American Journal of Medical Genetics. Part B, Neuropsychiatric Genetics, 137B, 1–4.

    Article  Google Scholar 

  • Thompson, M., Capdevila, J. H., & Strobel, H. W. (2000). Recombinant cytochrome P450 2D18 metabolism of dopamine and arachidonic acid. Journal of Pharmacology and Experimental Therapeutics, 294, 1120–1130.

    CAS  PubMed  Google Scholar 

  • Van Laar, V. S., Mishizen, A. J., Cascio, M., & Hastings, T. G. (2009). Proteomic identification of dopamine-conjugated proteins from isolated rat brain mitochondria and SH-SY5Y cells. Neurobiology of Disease, 34, 487–500.

    Article  PubMed Central  PubMed  Google Scholar 

  • Weinreb, O., Amit, T., Riederer, P., Youdim, M. B., & Mandel, S. A. (2011). Neuroprotective profile of the multitarget drug rasagiline in Parkinson’s disease. International Review of Neurobiology, 100, 127–149.

    Article  CAS  PubMed  Google Scholar 

  • Westlund, K. N., Denney, R. M., Rose, R. M., & Abell, C. W. (1988). Localization of distinct monoamine oxidase A and monoamine oxidase B cell populations in human brainstem. Neuroscience, 25, 439–456.

    Article  CAS  PubMed  Google Scholar 

  • Weyler, W., Hsu, Y. P., & Breakefield, X. O. (1990). Biochemistry and genetics of monoamine oxidase. Pharmacology and Therapeutics, 47, 391–417.

    Article  CAS  PubMed  Google Scholar 

  • Whitehead, R. E., Ferrer, J. V., Javitch, J. A., & Justice, J. B. (2001). Reaction of oxidized dopamine with endogenous cysteine residues in the human dopamine transporter. Journal of Neurochemistry, 76, 1242–1251.

    Article  CAS  PubMed  Google Scholar 

  • Williams, A. (1984). MPTP parkinsonism. British Medical Journal, 289, 1401–1402.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wolters, E. C., & Braak, H. (2006). Parkinson’s disease: Premotor clinico-pathological correlations. Journal of Neural Transmission. Supplementum, 70, 309–319.

    Article  PubMed  Google Scholar 

  • Xilouri, M., Vogiatzi, T., Vekrellis, K., Park, D., & Stefanis, L. (2009). Abberant alpha-synuclein confers toxicity to neurons in part through inhibition of chaperone-mediated autophagy. PLoS One, 4, e5515. doi:10.1371/journal.pone.0005515.

    Article  PubMed Central  PubMed  Google Scholar 

  • Xu, Y., Stokes, A. H., Roskoski, R., Jr., & Vrana, K. E. (1998). Dopamine, in the presence of tyrosinase, covalently modifies and inactivates tyrosine hydroxylase. Journal of Neuroscience Research, 54, 691–697.

    Article  CAS  PubMed  Google Scholar 

  • Zafar, K. S., Siegel, D., & Ross, D. (2006). A potential role for cyclized quinones derived from dopamine, DOPA, and 3,4-dihydroxyphenylacetic acid in proteasomal inhibition. Molecular Pharmacology, 70, 1079–1086.

    Article  CAS  PubMed  Google Scholar 

  • Zecca, L., Fariello, R., Riederer, P., Sulzer, D., Gatti, A., & Tampellini, D. (2002). The absolute concentration of nigral neuromelanin, assayed by a new sensitive method, increases throughout the life and is dramatically decreased in Parkinson’s disease. FEBS Letters, 510, 216–220.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, N. Y., Tang, Z., & Liu, C. W. (2008). Alpha-synuclein protofibrils inhibit 26S proteasome-mediated protein degradation: Understanding the cytotoxicity of protein protofibrils in neurodegenerative disease pathogenesis. Journal of Biological Chemistry, 283, 20288–20298.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, W., Phillips, K., Wielgus, A. R., Liu, J., Albertini, A., Zucca, F. A., Faust, R., Qian, S. Y., Miller, D. S., Chignell, C. F., Wilson, B., Jackson-Lewis, V., Przedborski, S., Joset, D., Loike, J., Hong, J. S., Sulzer, D., & Zecca, L. (2011). Neuromelanin activates microglia and induces degeneration of dopaminergic neurons: Implications for progression of Parkinson’s disease. Neurotoxicity Research, 19, 63–72.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

Supported by FONDECYT 1100165.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Segura-Aguilar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Segura-Aguilar, J., Paris, I. (2014). Mechanisms of Dopamine Oxidation and Parkinson’s Disease. In: Kostrzewa, R. (eds) Handbook of Neurotoxicity. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5836-4_16

Download citation

Publish with us

Policies and ethics