Skip to main content

Role of Ionotropic Glutamate Receptors in Neurodegenerative and Other Disorders

  • Reference work entry
  • First Online:
Handbook of Neurotoxicity

Abstract

Disorders of the central nervous system (CNS) are amongst the most complex disease states and lead to some of the most devastating conditions found in medicine today. It is well established that both genetic and epigenetic factors influence the pathogenesis of neurodegenerative disorders. More recently a growing body of evidence suggests that changes in neurotransmitter systems may underlie the pathogenic mechanisms of neurodegenerative disorders, such as Alzheimer’s disease and Parkinson’s disease. Excitatory amino acids (EAA) are known to play key roles in neurotransmission, neuromodulation, and neurotoxicity. EAA receptors are classified into two major subdivisions, ionotropic glutamate receptors (iGluRs) and metabotropic glutamate receptors (mGluRs). l-Glu-gated ion channels, more commonly known as (iGluRs), are the primary mediators of fast excitatory synaptic transmission between neurons in the mammalian CNS. Evidence suggests that the iGluR receptor systems are involved in a number of pathophysiology conditions. This chapter will detail the current state of knowledge regarding the involvement of iGluRs in neurodegenerative and other disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 549.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AD:

Alzheimer’s disease

AMPA:

Alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate

AMPAR:

AMPA receptor

CNS:

Central nervous system

EAA:

Excitatory amino acid

iGluR:

Ionotropic glutamate receptor

Kainate:

(2S,3S,4S)-3-(carboxymethyl)-4-prop-1-en-2-ylpyrrolidine-2-carboxylic acid

l-Glu:

l-glutamate

NMDA:

(2R)-2-(methylamino)-butanedioic acid

NMDAR:

NMDA receptor

References

  • Aarsland, D., et al. (2009). Memantine in patients with Parkinson’s disease dementia or dementia with Lewy bodies: A double-blind, placebo-controlled, multicentre trial. Lancet Neurology, 8(7), 613–618.

    CAS  PubMed  Google Scholar 

  • Addy, C., et al. (2009). Single-dose administration of MK-0657, an NR2B-selective NMDA antagonist, does not result in clinically meaningful improvement in motor function in patients with moderate Parkinson’s disease. Journal of Clinical Pharmacology, 49(7), 856–864.

    CAS  PubMed  Google Scholar 

  • Ahmed, I., et al. (2011). Glutamate NMDA receptor dysregulation in Parkinson’s disease with dyskinesias. Brain, 134(Pt 4), 979–986.

    PubMed  Google Scholar 

  • Akazawa, C., et al. (1994). Differential expression of five N-methyl-d-aspartate receptor subunit mRNAs in the cerebellum of developing and adult rats. The Journal of Comparative Neurology, 347(1), 150–160.

    CAS  PubMed  Google Scholar 

  • Albin, R. L., & Greenamyre, J. T. (1992). Alternative excitotoxic hypotheses. Neurology, 42(4), 733–738.

    CAS  PubMed  Google Scholar 

  • Araneda, R. C., Zukin, R. S., & Bennett, M. V. (1993). Effects of polyamines on NMDA-induced currents in rat hippocampal neurons: A whole-cell and single-channel study. Neuroscience Letters, 152(1–2), 107–112.

    CAS  PubMed  Google Scholar 

  • Armstead, W. M., et al. (2012). tPA-S481A prevents neurotoxicity of endogenous tPA in traumatic brain injury. Journal of Neurotrauma, 29(9), 1794–1802.

    PubMed Central  PubMed  Google Scholar 

  • Armstrong, D. M., et al. (1994). AMPA-selective glutamate receptor subtype immunoreactivity in the entorhinal cortex of non-demented elderly and patients with Alzheimer’s disease. Brain Research, 639(2), 207–216.

    CAS  PubMed  Google Scholar 

  • Aronica, E., et al. (1998). Non-plaque dystrophic dendrites in Alzheimer hippocampus: A new pathological structure revealed by glutamate receptor immunocytochemistry. Neuroscience, 82(4), 979–991.

    CAS  PubMed  Google Scholar 

  • Arundine, M., & Tymianski, M. (2003). Molecular mechanisms of calcium-dependent neurodegeneration in excitotoxicity. Cell Calcium, 34(4–5), 325–337.

    CAS  PubMed  Google Scholar 

  • ASD International. (2012). World Alzheimer Report – Overcoming the stigma of dementia, World Alzheimer Foundation, http://www.alz.co.uk/research/world-report-2012

  • Barton, M. E., Peters, S. C., & Shannon, H. E. (2003). Comparison of the effect of glutamate receptor modulators in the 6 Hz and maximal electroshock seizure models. Epilepsy Research, 56(1), 17–26.

    CAS  PubMed  Google Scholar 

  • Beattie, M. S., Ferguson, A. R., & Bresnahan, J. C. (2010). AMPA-receptor trafficking and injury-induced cell death. The European Journal of Neuroscience, 32(2), 290–297.

    PubMed Central  PubMed  Google Scholar 

  • Bennett, J. A., & Dingledine, R. (1995). Topology profile for a glutamate receptor: Three transmembrane domains and a channel-lining reentrant membrane loop. Neuron, 14(2), 373–384.

    CAS  PubMed  Google Scholar 

  • Bernert, H., & Turski, L. (1996). Traumatic brain damage prevented by the non-N-methyl-d-aspartate antagonist 2,3-dihydroxy-6-nitro-7-sulfamoylbenzo[f] quinoxaline. Proceedings of the National Academy of Sciences of the United States of America, 93(11), 5235–5240.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bettler, B., et al. (1990). Cloning of a novel glutamate receptor subunit, GluR5: Expression in the nervous system during development. Neuron, 5(5), 583–595.

    CAS  PubMed  Google Scholar 

  • Bettler, B., et al. (1992). Cloning of a putative glutamate receptor: A low affinity kainate-binding subunit. Neuron, 8(2), 257–265.

    CAS  PubMed  Google Scholar 

  • Bibbiani, F., et al. (2005). Combined blockade of AMPA and NMDA glutamate receptors reduces levodopa-induced motor complications in animal models of PD. Experimental Neurology, 196(2), 422–429.

    CAS  PubMed  Google Scholar 

  • Bjornsson, C. S., et al. (2006). Effects of insertion conditions on tissue strain and vascular damage during neuroprosthetic device insertion. Journal of Neural Engineering, 3(3), 196–207.

    CAS  PubMed  Google Scholar 

  • Blandini, F., Porter, R. H., & Greenamyre, J. T. (1996). Glutamate and Parkinson’s disease. Molecular Neurobiology, 12(1), 73–94.

    CAS  PubMed  Google Scholar 

  • Bliss, T. V., & Collingridge, G. L. (1993). A synaptic model of memory: Long-term potentiation in the hippocampus. Nature, 361(6407), 31–39.

    CAS  PubMed  Google Scholar 

  • Bobinski, M., et al. (1998). Neuronal and volume loss in CA1 of the hippocampal formation uniquely predicts duration and severity of Alzheimer disease. Brain Research, 805(1–2), 267–269.

    CAS  PubMed  Google Scholar 

  • Bockers, T. M., et al. (1994). Expression of the NMDA R1 receptor in selected human brain regions. Neuroreport, 5(8), 965–969.

    CAS  PubMed  Google Scholar 

  • Boehm, J., et al. (2006). Synaptic incorporation of AMPA receptors during LTP is controlled by a PKC phosphorylation site on GluR1. Neuron, 51(2), 213–225.

    CAS  PubMed  Google Scholar 

  • Boulter, J., et al. (1990). Molecular cloning and functional expression of glutamate receptor subunit genes. Science, 249(4972), 1033–1037.

    CAS  PubMed  Google Scholar 

  • Bouvier, M., et al. (1992). The glial cell glutamate uptake carrier counter transports pH-changing anions. Nature, 360(6403), 471–474.

    CAS  PubMed  Google Scholar 

  • Bruns, J., Jr., & Hauser, W. A. (2003). The epidemiology of traumatic brain injury: A review. Epilepsia, 44(Suppl 10), 2–10.

    PubMed  Google Scholar 

  • Bullock, R. (1995). Strategies for neuroprotection with glutamate antagonists. Extrapolating from evidence taken from the first stroke and head injury studies. Annals of the New York Academy of Sciences, 765, 272–278 discussion 298.

    CAS  PubMed  Google Scholar 

  • Calabresi, P., et al. (2010). Levodopa-induced dyskinesias in patients with Parkinson’s disease: Filling the bench-to-bedside gap. Lancet Neurology, 9(11), 1106–1117.

    CAS  PubMed  Google Scholar 

  • Calon, F., et al. (2003). Levodopa-induced motor complications are associated with alterations of glutamate receptors in Parkinson’s disease. Neurobiology of Disease, 14(3), 404–416.

    CAS  PubMed  Google Scholar 

  • Carter, T. L., et al. (2004). Differential preservation of AMPA receptor subunits in the hippocampi of Alzheimer’s disease patients according to Braak stage. Experimental Neurology, 187(2), 299–309.

    CAS  PubMed  Google Scholar 

  • Castagna, M., et al. (1997). Molecular characteristics of mammalian and insect amino acid transporters: Implications for amino acid homeostasis. The Journal of Experimental Biology, 200(Pt 2), 269–286.

    CAS  PubMed  Google Scholar 

  • Castellani, G. C., et al. (2005). A model of bidirectional synaptic plasticity: From signaling network to channel conductance. Learning & Memory, 12(4), 423–432.

    Google Scholar 

  • Celano, P., Baylin, S. B., & Casero, R. A., Jr. (1989). Polyamines differentially modulate the transcription of growth-associated genes in human colon carcinoma cells. The Journal of Biological Chemistry, 264(15), 8922–8927.

    CAS  PubMed  Google Scholar 

  • Chang, J. J., et al. (2009). Physiologic and functional outcome correlates of brain tissue hypoxia in traumatic brain injury. Critical Care Medicine, 37(1), 283–290.

    CAS  PubMed  Google Scholar 

  • Chappell, A. S., et al. (2002). A crossover, add-on trial of talampanel in patients with refractory partial seizures. Neurology, 58(11), 1680–1682.

    CAS  PubMed  Google Scholar 

  • Chase, T. N., & Oh, J. D. (2000). Striatal dopamine- and glutamate-mediated dysregulation in experimental parkinsonism. Trends in Neurosciences, 23(Suppl 10), S86–S91.

    CAS  PubMed  Google Scholar 

  • Choi, D. W., et al. (1990). Acute brain injury, NMDA receptors, and hydrogen ions: Observations in cortical cell cultures. Advances in Experimental Medicine and Biology, 268, 501–504.

    CAS  PubMed  Google Scholar 

  • Clements, J. D., et al. (1992). The time course of glutamate in the synaptic cleft. Science, 258(5087), 1498–1501.

    CAS  PubMed  Google Scholar 

  • Collingridge, G. L., et al. (2009). A nomenclature for ligand-gated ion channels. Neuropharmacology, 56(1), 2–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Constantine-Paton, M. (1990). NMDA receptor as a mediator of activity-dependent synaptogenesis in the developing brain. Cold Spring Harbor Symposia on Quantitative Biology, 55, 431–443.

    CAS  PubMed  Google Scholar 

  • Constantine-Paton, M., Cline, H. T., & Debski, E. (1990). Patterned activity, synaptic convergence, and the NMDA receptor in developing visual pathways. Annual Review of Neuroscience, 13, 129–154.

    CAS  PubMed  Google Scholar 

  • Contractor, A., Mulle, C., & Swanson, G. T. (2011). Kainate receptors coming of age: Milestones of two decades of research. Trends in Neurosciences, 34(3), 154–163.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Costa, T., et al. (2010). N-methyl-d-aspartate preconditioning improves short-term motor deficits outcome after mild traumatic brain injury in mice. Journal of Neuroscience Research, 88(6), 1329–1337.

    CAS  PubMed  Google Scholar 

  • Coyle, J. T., et al. (1981). Excitatory amino acid neurotoxins: Selectivity, specificity, and mechanisms of action. Based on an NRP one-day conference held June 30, 1980. Neurosciences Research Program Bulletin, 19(4), 1–427.

    CAS  PubMed  Google Scholar 

  • Crosby, N. J., Deane, K., & Clarke, C. E. (2003). Amantadine in Parkinson’s disease. Cochrane Database of Systematic Reviews (1). Art. No.: CD003468.

    Google Scholar 

  • Crosby, N. J., Deane, K., & Clarke, C. E. (2003). Amantadine for dyskinesia in Parkinson’s disease. Cochrane Database of Systematic Reviews (2). Art. No.: CD003467.

    Google Scholar 

  • Curtis, D. R., & Eccles, J. C. (1959). The time courses of excitatory and inhibitory synaptic actions. The Journal of Physiology, 145(3), 529–546.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Curtis, D. R., Phillis, J. W., & Watkins, J. C. (1959). Chemical excitation of spinal neurones. Nature, 183(4661), 611–612.

    CAS  PubMed  Google Scholar 

  • Czuczwar, S. J. (2000). Perspectives for the use of excitatory amino acid ionotropic receptor antagonists as antiepileptic drugs. Polish Journal of Pharmacology, 52(1), 67–70.

    CAS  PubMed  Google Scholar 

  • Darstein, M., et al. (2003). Distribution of kainate receptor subunits at hippocampal mossy fiber synapses. The Journal of Neuroscience, 23(22), 8013–8019.

    CAS  PubMed  Google Scholar 

  • Das, S., et al. (1998). Increased NMDA current and spine density in mice lacking the NMDA receptor subunit NR3A. Nature, 393(6683), 377–381.

    CAS  PubMed  Google Scholar 

  • de Lau, L. M., & Breteler, M. M. (2006). Epidemiology of Parkinson’s disease. Lancet Neurology, 5(6), 525–535.

    PubMed  Google Scholar 

  • Dempsey, R. J., Baskaya, M. K., & Dogan, A. (2000). Attenuation of brain edema, blood–brain barrier breakdown, and injury volume by ifenprodil, a polyamine-site N-methyl-d-aspartate receptor antagonist, after experimental traumatic brain injury in rats. Neurosurgery, 47(2), 399–404 discussion, 404–406.

    Google Scholar 

  • Derkach, V. A., et al. (2007). Regulatory mechanisms of AMPA receptors in synaptic plasticity. Nature Reviews. Neuroscience, 8(2), 101–113.

    CAS  PubMed  Google Scholar 

  • Dewar, D., et al. (1991). Glutamate metabotropic and AMPA binding sites are reduced in Alzheimer’s disease: An autoradiographic study of the hippocampus. Brain Research, 553(1), 58–64.

    CAS  PubMed  Google Scholar 

  • Dingledine, R., et al. (1999). The glutamate receptor ion channels. Pharmacological Reviews, 51(1), 7–61.

    CAS  PubMed  Google Scholar 

  • Dunah, A. W., et al. (2000). Alterations in subunit expression, composition, and phosphorylation of striatal N-methyl-d-aspartate glutamate receptors in a rat 6-hydroxydopamine model of Parkinson’s disease. Molecular Pharmacology, 57(2), 342–352.

    CAS  PubMed  Google Scholar 

  • Durand, G. M., Bennett, M. V., & Zukin, R. S. (1993). Splice variants of the N-methyl-d-aspartate receptor NR1 identify domains involved in regulation by polyamines and protein kinase C. Proceedings of the National Academy of Sciences of the United States of America, 90(14), 6731–6735.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Egebjerg, J., et al. (1991). Cloning of a cDNA for a glutamate receptor subunit activated by kainate but not AMPA. Nature, 351(6329), 745–748.

    CAS  PubMed  Google Scholar 

  • Erecinska, M., & Silver, I. A. (1990). Metabolism and role of glutamate in mammalian brain. Progress in Neurobiology, 35(4), 245–296.

    CAS  PubMed  Google Scholar 

  • Evans, L. K. (1989). Nursing the hospitalized dementia patient. Journal of Advanced Medical-Surgical Nursing, 1(2), 18–31.

    CAS  PubMed  Google Scholar 

  • Faden, A. I., et al. (1989). The role of excitatory amino acids and NMDA receptors in traumatic brain injury. Science, 244(4906), 798–800.

    CAS  PubMed  Google Scholar 

  • Ferrarese, C., et al. (1993). Assessment of reliability and biological significance of glutamate levels in cerebrospinal fluid. Annals of Neurology, 33(3), 316–319.

    CAS  PubMed  Google Scholar 

  • Fisahn, A., et al. (2004). Distinct roles for the kainate receptor subunits GluR5 and GluR6 in kainate-induced hippocampal gamma oscillations. The Journal of Neuroscience, 24(43), 9658–9668.

    CAS  PubMed  Google Scholar 

  • Fisher, J. L., & Mott, D. D. (2011). Distinct functional roles of subunits within the heteromeric kainate receptor. The Journal of Neuroscience, 31(47), 17113–17122.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Forsyth, E., & Ritzline, P. D. (1998). An overview of the etiology, diagnosis, and treatment of Alzheimer disease. Physical Therapy, 78(12), 1325–1331.

    CAS  PubMed  Google Scholar 

  • Frandsen, A., & Schousboe, A. (2003). AMPA receptor-mediated neurotoxicity: Role of Ca2+ and desensitization. Neurochemical Research, 28(10), 1495–1499.

    CAS  PubMed  Google Scholar 

  • French, J. A., et al. (2012). Adjunctive perampanel for refractory partial-onset seizures: Randomized phase III study 304. Neurology, 79(6), 589–596.

    PubMed Central  PubMed  Google Scholar 

  • Frigo, M., et al. (2012). Glutamate and multiple sclerosis. Current Medicinal Chemistry, 19(9), 1295–1299.

    CAS  PubMed  Google Scholar 

  • Gallo, V., et al. (1992). Molecular cloning and development analysis of a new glutamate receptor subunit isoform in cerebellum. The Journal of Neuroscience, 12(3), 1010–1023.

    CAS  PubMed  Google Scholar 

  • Gallyas, F., Jr., Ball, S. M., & Molnar, E. (2003). Assembly and cell surface expression of KA-2 subunit-containing kainate receptors. Journal of Neurochemistry, 86(6), 1414–1427.

    CAS  PubMed  Google Scholar 

  • Garcia-Ladona, F. J., et al. (1994). Excitatory amino acid AMPA receptor mRNA localization in several regions of normal and neurological disease affected human brain. An in situ hybridization histochemistry study. Brain Research. Molecular Brain Research, 21(1–2), 75–84.

    CAS  PubMed  Google Scholar 

  • Ghasemi, M., & Schachter, S. C. (2011). The NMDA receptor complex as a therapeutic target in epilepsy: A review. Epilepsy & Behavior, 22(4), 617–640.

    Google Scholar 

  • Goforth, P. B., Ellis, E. F., & Satin, L. S. (2004). Mechanical injury modulates AMPA receptor kinetics via an NMDA receptor-dependent pathway. Journal of Neurotrauma, 21(6), 719–732.

    PubMed  Google Scholar 

  • Greenamyre, J. T., et al. (1994). Antiparkinsonian effects of remacemide hydrochloride, a glutamate antagonist, in rodent and primate models of Parkinson’s disease. Annals of Neurology, 35(6), 655–661.

    CAS  PubMed  Google Scholar 

  • Grosskreutz, J., Van Den Bosch, L., & Keller, B. U. (2010). Calcium dysregulation in amyotrophic lateral sclerosis. Cell Calcium, 47(2), 165–174.

    CAS  PubMed  Google Scholar 

  • Gu, Z., Liu, W., & Yan, Z. (2009). {beta}-Amyloid impairs AMPA receptor trafficking and function by reducing Ca2+/calmodulin-dependent protein kinase II synaptic distribution. The Journal of Biological Chemistry, 284(16), 10639–10649.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gunderson, C. B., Miledi, R., & Parker. I. (1984). mRNA from human brain induces drug- and voltage-operated channels in Xenopus oocytes. Nature, 308, 421–424.

    Google Scholar 

  • Ha, H. C., et al. (1997). The role of polyamine catabolism in polyamine analogue-induced programmed cell death. Proceedings of the National Academy of Sciences of the United States of America, 94(21), 11557–11562.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hadj Tahar, A., et al. (2004). Effect of a selective glutamate antagonist on l-dopa-induced dyskinesias in drug-naive parkinsonian monkeys. Neurobiology of Disease, 15(2), 171–176.

    CAS  PubMed  Google Scholar 

  • Hayes, R. L., et al. (1988). Pretreatment with phencyclidine, an N-methyl-d-aspartate antagonist, attenuates long-term behavioral deficits in the rat produced by traumatic brain injury. Journal of Neurotrauma, 5(4), 259–274.

    CAS  PubMed  Google Scholar 

  • Herb, A., et al. (1992). The KA-2 subunit of excitatory amino acid receptors shows widespread expression in brain and forms ion channels with distantly related subunits. Neuron, 8(4), 775–785.

    CAS  PubMed  Google Scholar 

  • Hollmann, M., & Heinemann, S. (1994). Cloned glutamate receptors. Annual Review of Neuroscience, 17, 31–108.

    CAS  PubMed  Google Scholar 

  • Hollmann, M., et al. (1989). Cloning by functional expression of a member of the glutamate receptor family. Nature, 342(6250), 643–648.

    CAS  PubMed  Google Scholar 

  • Hollmann, M., et al. (1993). Zinc potentiates agonist-induced currents at certain splice variants of the NMDA receptor. Neuron, 10(5), 943–954.

    CAS  PubMed  Google Scholar 

  • Hovda, D. A., et al. (1995). The neurochemical and metabolic cascade following brain injury: Moving from animal models to man. Journal of Neurotrauma, 12(5), 903–906.

    CAS  PubMed  Google Scholar 

  • Huettner, J. E. (2003). Kainate receptors and synaptic transmission. Progress in Neurobiology, 70(5), 387–407.

    CAS  PubMed  Google Scholar 

  • Hyman, B. T., et al. (1986). Perforant pathway changes and the memory impairment of Alzheimer’s disease. Annals of Neurology, 20(4), 472–481.

    CAS  PubMed  Google Scholar 

  • Hyman, C., et al. (1991). BDNF is a neurotrophic factor for dopaminergic neurons of the substantia nigra. Nature, 350(6315), 230–232.

    CAS  PubMed  Google Scholar 

  • Hynd, M. R., Scott, H. L., & Dodd, P. R. (2001). Glutamate(NMDA) receptor NR1 subunit mRNA expression in Alzheimer’s disease. Journal of Neurochemistry, 78(1), 175–182.

    CAS  PubMed  Google Scholar 

  • Hynd, M. R., Scott, H. L., & Dodd, P. R. (2004a). Glutamate-mediated excitotoxicity and neurodegeneration in Alzheimer’s disease. Neurochemistry International, 45(5), 583–595.

    CAS  PubMed  Google Scholar 

  • Hynd, M. R., Scott, H. L., & Dodd, P. R. (2004b). Selective loss of NMDA receptor NR1 subunit isoforms in Alzheimer’s disease. Journal of Neurochemistry, 89(1), 240–247.

    CAS  PubMed  Google Scholar 

  • Ikonomovic, M. D., et al. (1997). The loss of GluR2(3) immunoreactivity precedes neurofibrillary tangle formation in the entorhinal cortex and hippocampus of Alzheimer brains. Journal of Neuropathology and Experimental Neurology, 56(9), 1018–1027.

    CAS  PubMed  Google Scholar 

  • Ikonomovic, M. D., et al. (1999). Distribution of glutamate receptor subunit NMDAR1 in the hippocampus of normal elderly and patients with Alzheimer’s disease. Experimental Neurology, 160(1), 194–204.

    CAS  PubMed  Google Scholar 

  • Ishii, T., et al. (1993). Molecular characterization of the family of the N-methyl-d-aspartate receptor subunits. The Journal of Biological Chemistry, 268(4), 2836–2843.

    CAS  PubMed  Google Scholar 

  • Jaskolski, F., et al. (2004). Subunit composition and alternative splicing regulate membrane delivery of kainate receptors. The Journal of Neuroscience, 24(10), 2506–2515.

    CAS  PubMed  Google Scholar 

  • Jean Taxil, TRAICTE DE L’EPILEPSIE, http://asklepios.chez.com/taxil/Livre1_Chap15.htm

  • Kamboj, R. K., et al. (1992). Molecular structure and pharmacological characterization of humEAA2, a novel human kainate receptor subunit. Molecular Pharmacology, 42(1), 10–15.

    CAS  PubMed  Google Scholar 

  • Kanai, Y., et al. (1994). The neuronal and epithelial human high affinity glutamate transporter. Insights into structure and mechanism of transport. The Journal of Biological Chemistry, 269(32), 20599–20606.

    CAS  PubMed  Google Scholar 

  • Karp, S. J., et al. (1993). Molecular cloning and chromosomal localization of the key subunit of the human N-methyl-d-aspartate receptor. The Journal of Biological Chemistry, 268(5), 3728–3733.

    CAS  PubMed  Google Scholar 

  • Keinanen, K., et al. (1990). A family of AMPA-selective glutamate receptors. Science, 249(4968), 556–560.

    CAS  PubMed  Google Scholar 

  • Kharlamov, E. A., et al. (2011). Alterations of GABA(A) and glutamate receptor subunits and heat shock protein in rat hippocampus following traumatic brain injury and in posttraumatic epilepsy. Epilepsy Research, 95(1–2), 20–34.

    CAS  PubMed  Google Scholar 

  • Konitsiotis, S., et al. (2000). AMPA receptor blockade improves levodopa-induced dyskinesia in MPTP monkeys. Neurology, 54(8), 1589–1595.

    CAS  PubMed  Google Scholar 

  • Krnjevic, K., & Phillis, J. W. (1963). Iontophoretic studies of neurones in the mammalian cerebral cortex. The Journal of Physiology, 165, 274–304.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kumar, A., et al. (2002). N-methyl-d-aspartate receptors: Transient loss of NR1/NR2A/NR2B subunits after traumatic brain injury in a rodent model. Journal of Neuroscience Research, 67(6), 781–786.

    CAS  PubMed  Google Scholar 

  • Lange, K. W., Kornhuber, J., & Riederer, P. (1997). Dopamine/glutamate interactions in Parkinson’s disease. Neuroscience and Biobehavioral Reviews, 21(4), 393–400.

    CAS  PubMed  Google Scholar 

  • Lauterborn, J. C., et al. (2000). Positive modulation of AMPA receptors increases neurotrophin expression by hippocampal and cortical neurons. The Journal of Neuroscience, 20(1), 8–21.

    CAS  PubMed  Google Scholar 

  • Lee, H. K., & Kirkwood, A. (2011). AMPA receptor regulation during synaptic plasticity in hippocampus and neocortex. Seminars in Cell & Developmental Biology, 22(5), 514–520.

    Google Scholar 

  • Lee, H. K., et al. (2000). Regulation of distinct AMPA receptor phosphorylation sites during bidirectional synaptic plasticity. Nature, 405(6789), 955–959.

    CAS  PubMed  Google Scholar 

  • Lee, H. K., et al. (2007). Identification and characterization of a novel phosphorylation site on the GluR1 subunit of AMPA receptors. Molecular and Cellular Neurosciences, 36(1), 86–94.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lenzen, S., Hickethier, R., & Panten, U. (1986). Interactions between spermine and Mg2+ on mitochondrial Ca2+ transport. The Journal of Biological Chemistry, 261(35), 16478–16483.

    CAS  PubMed  Google Scholar 

  • Lerma, J. (2011). Net(o) excitement for kainate receptors. Nature Neuroscience, 14(7), 808–810.

    CAS  PubMed  Google Scholar 

  • Li, J. M., et al. (2010). Aberrant glutamate receptor 5 expression in temporal lobe epilepsy lesions. Brain Research, 1311, 166–174.

    CAS  PubMed  Google Scholar 

  • Lomeli, H., et al. (1992). High-affinity kainate and domoate receptors in rat brain. FEBS Letters, 307(2), 139–143.

    CAS  PubMed  Google Scholar 

  • Loschmann, P. A., et al. (2004). Antiparkinsonian activity of Ro 25–6981, a NR2B subunit specific NMDA receptor antagonist, in animal models of Parkinson’s disease. Experimental Neurology, 187(1), 86–93.

    CAS  PubMed  Google Scholar 

  • Lucas, D. R., & Newhouse, J. P. (1957). AMA Arch Ophthalmol, 58(2), 193–201.

    Google Scholar 

  • Luo, P., et al. (2011). The role of glutamate receptors in traumatic brain injury: Implications for postsynaptic density in pathophysiology. Brain Research Bulletin, 85(6), 313–320.

    CAS  PubMed  Google Scholar 

  • Matute, C. (2011). Therapeutic potential of kainate receptors. CNS Neuroscience & Therapeutics, 17(6), 661–669.

    CAS  Google Scholar 

  • McIntosh, T. K., et al. (1990). Effect of noncompetitive blockade of N-methyl-d-aspartate receptors on the neurochemical sequelae of experimental brain injury. Journal of Neurochemistry, 55(4), 1170–1179.

    CAS  PubMed  Google Scholar 

  • Megyeri, K., et al. (2007). Effects of 2,3-benzodiazepine AMPA receptor antagonists on dopamine turnover in the striatum of rats with experimental parkinsonism. Brain Research Bulletin, 71(5), 501–507.

    CAS  PubMed  Google Scholar 

  • Monyer, H., et al. (1992). Heteromeric NMDA receptors: Molecular and functional distinction of subtypes. Science, 256(5060), 1217–1221.

    CAS  PubMed  Google Scholar 

  • Monyer, H., et al. (1994). Developmental and regional expression in the rat brain and functional properties of four NMDA receptors. Neuron, 12(3), 529–540.

    CAS  PubMed  Google Scholar 

  • Moojen, V. K., et al. (2012). NMDA preconditioning prevents object recognition memory impairment and increases brain viability in mice exposed to traumatic brain injury. Brain Research, 1466, 82–90.

    CAS  PubMed  Google Scholar 

  • Moriyoshi, K., et al. (1991). Molecular cloning and characterization of the rat NMDA receptor. Nature, 354(6348), 31–37.

    CAS  PubMed  Google Scholar 

  • Morrison, L. D., & Kish, S. J. (1995). Brain polyamine levels are altered in Alzheimer’s disease. Neuroscience Letters, 197(1), 5–8.

    CAS  PubMed  Google Scholar 

  • Morrison, L. D., et al. (1995). Polyamines in human brain: Regional distribution and influence of aging. Journal of Neurochemistry, 65(2), 636–642.

    CAS  PubMed  Google Scholar 

  • Mulle, C., et al. (1998). Altered synaptic physiology and reduced susceptibility to kainate-induced seizures in GluR6-deficient mice. Nature, 392(6676), 601–605.

    CAS  PubMed  Google Scholar 

  • Murray, T. K., et al. (2003). LY503430, a novel alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor potentiator with functional, neuroprotective and neurotrophic effects in rodent models of Parkinson’s disease. The Journal of Pharmacology and Experimental Therapeutics, 306(2), 752–762.

    CAS  PubMed  Google Scholar 

  • Nakanishi, N., Shneider, N. A., & Axel, R. (1990). A family of glutamate receptor genes: Evidence for the formation of heteromultimeric receptors with distinct channel properties. Neuron, 5(5), 569–581.

    CAS  PubMed  Google Scholar 

  • Nash, J. E., et al. (2004). The NR2B-selective NMDA receptor antagonist CP-101,606 exacerbates l-DOPA-induced dyskinesia and provides mild potentiation of anti-parkinsonian effects of l-DOPA in the MPTP-lesioned marmoset model of Parkinson’s disease. Experimental Neurology, 188(2), 471–479.

    CAS  PubMed  Google Scholar 

  • Nutt, J. G., et al. (2008). Effects of a NR2B selective NMDA glutamate antagonist, CP-101,606, on dyskinesia and Parkinsonism. Movement Disorders, 23(13), 1860–1866.

    PubMed Central  PubMed  Google Scholar 

  • O’Neill, M. J., & Witkin, J. M. (2007). AMPA receptor potentiators: Application for depression and Parkinson’s disease. Current Drug Targets, 8(5), 603–620.

    PubMed  Google Scholar 

  • Olney, J. W., et al. (1986). The role of specific ions in glutamate neurotoxicity. Neuroscience Letters, 65(1), 65–71.

    CAS  PubMed  Google Scholar 

  • Ozawa, S., Kamiya, H., & Tsuzuki, K. (1998). Glutamate receptors in the mammalian central nervous system. Progress in Neurobiology, 54(5), 581–618.

    CAS  PubMed  Google Scholar 

  • Panter, S. S., & Faden, A. I. (1992). Pretreatment with NMDA antagonists limits release of excitatory amino acids following traumatic brain injury. Neuroscience Letters, 136(2), 165–168.

    CAS  PubMed  Google Scholar 

  • Paquette, M. A., et al. (2010). MK-801 inhibits l-DOPA-induced abnormal involuntary movements only at doses that worsen parkinsonism. Neuropharmacology, 58(7), 1002–1008.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Paschen, W. (1992). Polyamine metabolism in different pathological states of the brain. Molecular and Chemical Neuropathology, 16(3), 241–271.

    CAS  PubMed  Google Scholar 

  • Petralia, R. S., Wang, Y. X., & Wenthold, R. J. (1994a). Histological and ultrastructural localization of the kainate receptor subunits, KA2 and GluR6/7, in the rat nervous system using selective antipeptide antibodies. The Journal of Comparative Neurology, 349(1), 85–110.

    CAS  PubMed  Google Scholar 

  • Petralia, R. S., Wang, Y. X., & Wenthold, R. J. (1994b). The NMDA receptor subunits NR2A and NR2B show histological and ultrastructural localization patterns similar to those of NR1. The Journal of Neuroscience, 14(10), 6102–6120.

    CAS  PubMed  Google Scholar 

  • Petralia, R. S., Yokotani, N., & Wenthold, R. J. (1994c). Light and electron microscope distribution of the NMDA receptor subunit NMDAR1 in the rat nervous system using a selective anti-peptide antibody. The Journal of Neuroscience, 14(2), 667–696.

    CAS  PubMed  Google Scholar 

  • Rabey, J. M., Nissipeanu, P., & Korczyn, A. D. (1992). Efficacy of memantine, an NMDA receptor antagonist, in the treatment of Parkinson’s disease. Journal of Neural Transmission. Parkinson's Disease and Dementia Section, 4, 277–282.

    CAS  PubMed  Google Scholar 

  • Raymond, L. A., et al. (2011). Pathophysiology of Huntington’s disease: Time-dependent alterations in synaptic and receptor function. Neuroscience, 198, 252–273.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Reynolds, I. J., & Miller, R. J. (1989). Ifenprodil is a novel type of N-methyl-d-aspartate receptor antagonist: Interaction with polyamines. Molecular Pharmacology, 36(5), 758–765.

    CAS  PubMed  Google Scholar 

  • Rigby, M., et al. (1996). The messenger RNAs for the N-methyl-d-aspartate receptor subunits show region-specific expression of different subunit composition in the human brain. Neuroscience, 73(2), 429–447.

    CAS  PubMed  Google Scholar 

  • Rock, D. M., & Macdonald, R. L. (1995). Polyamine regulation of N-methyl-d-aspartate receptor channels. Annual Review of Pharmacology and Toxicology, 35, 463–482.

    CAS  PubMed  Google Scholar 

  • Roses, A. D. (1998a). Genetic testing and Alzheimer disease: The promise. Alzheimer Disease and Associated Disorders, 12(Suppl 3), S3–S9.

    PubMed  Google Scholar 

  • Roses, A. D. (1998b). Alzheimer diseases: A model of gene mutations and susceptibility polymorphisms for complex psychiatric diseases. American Journal of Medical Genetics, 81(1), 49–57.

    CAS  PubMed  Google Scholar 

  • Samii, A., Nutt, J. G., & Ransom, B. R. (2004). Parkinson’s disease. Lancet, 363(9423), 1783–1793.

    CAS  PubMed  Google Scholar 

  • Santos, S. D., et al. (2009). Regulation of AMPA receptors and synaptic plasticity. Neuroscience, 158(1), 105–125.

    CAS  PubMed  Google Scholar 

  • Sarhan, S., & Seiler, N. (1989). On the subcellular localization of the polyamines. Biological Chemistry Hoppe-Seyler, 370(12), 1279–1284.

    CAS  PubMed  Google Scholar 

  • Schaeffer, E. L., & Gattaz, W. F. (2008). Cholinergic and glutamatergic alterations beginning at the early stages of Alzheimer disease: Participation of the phospholipase A2 enzyme. Psychopharmacology, 198(1), 1–27.

    CAS  PubMed  Google Scholar 

  • Schmid, A., et al. (2008). Activity-dependent site-specific changes of glutamate receptor composition in vivo. Nature Neuroscience, 11(6), 659–666.

    CAS  PubMed  Google Scholar 

  • Schumann, J., et al. (2008). Inhibition of NR2B phosphorylation restores alterations in NMDA receptor expression and improves functional recovery following traumatic brain injury in mice. Journal of Neurotrauma, 25(8), 945–957.

    PubMed Central  PubMed  Google Scholar 

  • Seeburg, P. H. (1993). The TINS/TiPS lecture. The molecular biology of mammalian glutamate receptor channels. Trends in Neurosciences, 16(9), 359–365.

    CAS  PubMed  Google Scholar 

  • Seeburg, P. H., Higuchi, M., & Sprengel, R. (1998). RNA editing of brain glutamate receptor channels: Mechanism and physiology. Brain Research. Brain Research Reviews, 26(2–3), 217–229.

    CAS  PubMed  Google Scholar 

  • Shankar, G. M., & Walsh, D. M. (2009). Alzheimer’s disease: Synaptic dysfunction and Abeta. Molecular Neurodegeneration, 4, 48.

    PubMed Central  PubMed  Google Scholar 

  • Shankar, G. M., et al. (2007). Natural oligomers of the Alzheimer amyloid-beta protein induce reversible synapse loss by modulating an NMDA-type glutamate receptor-dependent signaling pathway. The Journal of Neuroscience, 27(11), 2866–2875.

    CAS  PubMed  Google Scholar 

  • Shoulson, I., et al. (2001). A randomized, controlled trial of remacemide for motor fluctuations in Parkinson’s disease. Neurology, 56(4), 455–462.

    CAS  PubMed  Google Scholar 

  • Smolders, I., et al. (2002). Antagonists of GLU(K5)-containing kainate receptors prevent pilocarpine-induced limbic seizures. Nature Neuroscience, 5(8), 796–804.

    CAS  PubMed  Google Scholar 

  • Sommer, B., et al. (1990). Flip and flop: A cell-specific functional switch in glutamate-operated channels of the CNS. Science, 249(4976), 1580–1585.

    CAS  PubMed  Google Scholar 

  • Sommer, B., et al. (1992). A glutamate receptor channel with high affinity for domoate and kainate. The EMBO Journal, 11(4), 1651–1656.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Spaethling, J. M., et al. (2008). Calcium-permeable AMPA receptors appear in cortical neurons after traumatic mechanical injury and contribute to neuronal fate. Journal of Neurotrauma, 25(10), 1207–1216.

    PubMed Central  PubMed  Google Scholar 

  • Starr, M. S. (1995). Antiparkinsonian actions of glutamate antagonists–alone and with l-DOPA: A review of evidence and suggestions for possible mechanisms. Journal of Neural Transmission. Parkinson's Disease and Dementia Section, 10(2–3), 141–185.

    CAS  PubMed  Google Scholar 

  • Stauch Slusher, B., et al. (1995). Centrally-administered AMPA antagonists increase locomotion in parkinsonian rats. Journal of Neural Transmission. Parkinson's Disease and Dementia Section, 9(2–3), 145–149.

    CAS  PubMed  Google Scholar 

  • Stephen, L. J., & Brodie, M. J. (2011). Pharmacotherapy of epilepsy: Newly approved and developmental agents. CNS Drugs, 25(2), 89–107.

    CAS  PubMed  Google Scholar 

  • Stromgaard, K., & Mellor, I. (2004). AMPA receptor ligands: Synthetic and pharmacological studies of polyamines and polyamine toxins. Medicinal Research Reviews, 24(5), 589–620.

    PubMed  Google Scholar 

  • Sucher, N. J., et al. (1995). Developmental and regional expression pattern of a novel NMDA receptor-like subunit (NMDAR-L) in the rodent brain. The Journal of Neuroscience, 15(10), 6509–6520.

    CAS  PubMed  Google Scholar 

  • Sugihara, H., et al. (1992). Structures and properties of seven isoforms of the NMDA receptor generated by alternative splicing. Biochemical and Biophysical Research Communications, 185(3), 826–832.

    CAS  PubMed  Google Scholar 

  • Sultana, R., Banks, W. A., & Butterfield, D. A. (2010). Decreased levels of PSD95 and two associated proteins and increased levels of BCl2 and caspase 3 in hippocampus from subjects with amnestic mild cognitive impairment: Insights into their potential roles for loss of synapses and memory, accumulation of Abeta, and neurodegeneration in a prodromal stage of Alzheimer’s disease. Journal of Neuroscience Research, 88(3), 469–477.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Surmeier, D. J., et al. (2010). What causes the death of dopaminergic neurons in Parkinson’s disease? Progress in Brain Research, 183, 59–77.

    CAS  PubMed  Google Scholar 

  • Swanson, G. T. (2009). Targeting AMPA and kainate receptors in neurological disease: Therapies on the horizon? Neuropsychopharmacology, 34(1), 249–250.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sze, C., et al. (2001). N-Methyl-d-aspartate receptor subunit proteins and their phosphorylation status are altered selectively in Alzheimer’s disease. Journal of the Neurological Sciences, 182(2), 151–159.

    CAS  PubMed  Google Scholar 

  • Tabor, C. W., & Tabor, H. (1984). Polyamines. Annual Review of Biochemistry, 53, 749–790.

    CAS  PubMed  Google Scholar 

  • Takeuchi, A., & Takeuchi, N. (1963). Glutamate-induced depolarization in crustacean muscle. Nature, 198, 490–491.

    CAS  PubMed  Google Scholar 

  • Traynelis, S. F., Hartley, M., & Heinemann, S. F. (1995). Control of proton sensitivity of the NMDA receptor by RNA splicing and polyamines. Science, 268(5212), 873–876.

    CAS  PubMed  Google Scholar 

  • Ulas, J., & Cotman, C. W. (1997). Decreased expression of N-methyl-D-aspartate receptor 1 messenger RNA in select regions of Alzheimer brain. Neuroscience, 79(4), 973–82.

    Google Scholar 

  • Ulas, J., et al. (1994). Selective increase of NMDA-sensitive glutamate binding in the striatum of Parkinson’s disease, Alzheimer’s disease, and mixed Parkinson’s disease/Alzheimer’s disease patients: An autoradiographic study. The Journal of Neuroscience, 14(11 Pt 1), 6317–6324.

    CAS  PubMed  Google Scholar 

  • Vincent, P., & Mulle, C. (2009). Kainate receptors in epilepsy and excitotoxicity. Neuroscience, 158(1), 309–323.

    CAS  PubMed  Google Scholar 

  • Wakabayashi, K., Honer, W. G., & Masliah, E. (1994). Synapse alterations in the hippocampal-entorhinal formation in Alzheimer’s disease with and without Lewy body disease. Brain Research, 667(1), 24–32.

    CAS  PubMed  Google Scholar 

  • Watanabe, M., et al. (1992). Developmental changes in distribution of NMDA receptor channel subunit mRNAs. Neuroreport, 3(12), 1138–1140.

    CAS  PubMed  Google Scholar 

  • Werner, P., et al. (1991). Cloning of a putative high-affinity kainate receptor expressed predominantly in hippocampal CA3 cells. Nature, 351(6329), 742–744.

    CAS  PubMed  Google Scholar 

  • Whetsell, W. O., Jr., & Shapira, N. A. (1993). Neuroexcitation, excitotoxicity and human neurological disease. Laboratory Investigation, 68(4), 372–387.

    CAS  PubMed  Google Scholar 

  • Williams, K., Romano, C., & Molinoff, P. B. (1989). Effects of polyamines on the binding of [3H]MK-801 to the N-methyl-d-aspartate receptor: Pharmacological evidence for the existence of a polyamine recognition site. Molecular Pharmacology, 36(4), 575–581.

    CAS  PubMed  Google Scholar 

  • Woods, N. K., & Padmanabhan, J. (2012). Neuronal calcium signaling and Alzheimer’s disease. Advances in Experimental Medicine and Biology, 740, 1193–1217.

    CAS  PubMed  Google Scholar 

  • World Health Organization. (2012). Dementia: A public health priority. Geneva: World Health Organization.

    Google Scholar 

  • Wu, S. S., & Frucht, S. J. (2005). Treatment of Parkinson’s disease: What’s on the horizon? CNS Drugs, 19(9), 723–743.

    CAS  PubMed  Google Scholar 

  • Yamazaki, M., et al. (1992). Cloning, expression and modulation of a mouse NMDA receptor subunit. FEBS Letters, 300(1), 39–45.

    CAS  PubMed  Google Scholar 

  • Yasuda, R. P., et al. (1995). Reduction of AMPA-selective glutamate receptor subunits in the entorhinal cortex of patients with Alzheimer’s disease pathology: A biochemical study. Brain Research, 678(1–2), 161–167.

    CAS  PubMed  Google Scholar 

  • Zhang, L., et al. (1994). Spermine potentiation of recombinant N-methyl-d-aspartate receptors is affected by subunit composition. Proceedings of the National Academy of Sciences of the United States of America, 91(23), 10883–10887.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zheng, Z., Sabirzhanov, B., & Keifer, J. (2010). Oligomeric amyloid-{beta} inhibits the proteolytic conversion of brain-derived neurotrophic factor (BDNF), AMPA receptor trafficking, and classical conditioning. The Journal of Biological Chemistry, 285(45), 34708–34717.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zimmer, M., et al. (1995). Cloning and structure of the gene encoding the human N-methyl-d-aspartate receptor (NMDAR1). Gene, 159(2), 219–223.

    CAS  PubMed  Google Scholar 

  • Zundorf, G., & Reiser, G. (2011). Calcium dysregulation and homeostasis of neural calcium in the molecular mechanisms of neurodegenerative diseases provide multiple targets for neuroprotection. Antioxidants & Redox Signaling, 14(7), 1275–1288.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lotten Ragnarsson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Ragnarsson, L., Dodd, P.R., Hynd, M.R. (2014). Role of Ionotropic Glutamate Receptors in Neurodegenerative and Other Disorders. In: Kostrzewa, R. (eds) Handbook of Neurotoxicity. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5836-4_144

Download citation

Publish with us

Policies and ethics