Skip to main content

Alpha Synuclein in Parkinson’s Disease

  • Reference work entry
  • First Online:
Handbook of Neurotoxicity

Abstract

The perception of Parkinson’s disease (PD) as a disease centered on dopaminergic striatonigral neurodegeneration has changed fundamentally since 1997 when the first mutation in the SNCA gene (PARK1) encoding α-synuclein was discovered (Polymeropoulos et al. 1997). This discovery formed the basis for a new description of brain pathology characterized by the presence of α-synuclein aggregates in brain cell inclusions that are the hallmarks of PD and other synucleinopathies: dementia with Lewy bodies (DLB) and multiple system atrophy (MSA). This field has been thoroughly covered by many reviews during the last decade (Gai et al. 1998; Spillantini and Goedert 2000; Huang et al. 2004; Ubhi et al. 2011). This review will briefly highlight the historical breakthroughs but focus on α-synuclein modifications, human neuropathology, biomarker potential, current animal models and the new concepts emerging after the significance of extracellular α-synuclein has gained support.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 549.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abeliovich, A., Schmitz, Y., Farinas, I., Choi-Lundberg, D., Ho, W. H., Castillo, P. E., Shinsky, N., Verdugo, J. M., Armanini, M., Ryan, A., Hynes, M., Phillips, H., Sulzer, D., & Rosenthal, A. (2000). Mice lacking alpha-synuclein display functional deficits in the nigrostriatal dopamine system. Neuron, 25, 239–252.

    CAS  PubMed  Google Scholar 

  • Anderson, J. P., Walker, D. E., Goldstein, J. M., de Laat, R., Banducci, K., Caccavello, R. J., Barbour, R., Huang, J., Kling, K., Lee, M., Diep, L., Keim, P. S., Shen, X., Chataway, T., Schlossmacher, M. G., Seubert, P., Schenk, D., Sinha, S., Gai, W. P., & Chilcote, T. J. (2006). Phosphorylation of Ser-129 is the dominant pathological modification of alpha-synuclein in familial and sporadic Lewy body disease. The Journal of Biological Chemistry, 281, 29739–29752.

    CAS  PubMed  Google Scholar 

  • Arawaka, S., Wada, M., Goto, S., Karube, H., Sakamoto, M., Ren, C. H., Koyama, S., Nagasawa, H., Kimura, H., Kawanami, T., Kurita, K., Tajima, K., Daimon, M., Baba, M., Kido, T., Saino, S., Goto, K., Asao, H., Kitanaka, C., Takashita, E., Hongo, S., Nakamura, T., Kayama, T., Suzuki, Y., Kobayashi, K., Katagiri, T., Kurokawa, K., Kurimura, M., Toyoshima, I., Niizato, K., Tsuchiya, K., Iwatsubo, T., Muramatsu, M., Matsumine, H., & Kato, T. (2006). The role of G-protein-coupled receptor kinase 5 in pathogenesis of sporadic Parkinson’s disease. The Journal of Neuroscience, 26, 9227–9238.

    CAS  PubMed  Google Scholar 

  • Azeredo da Silveira, S., Schneider, B. L., Cifuentes-Diaz, C., Sage, D., Abbas-Terki, T., Iwatsubo, T., Unser, M., & Aebischer, P. (2009). Phosphorylation does not prompt, nor prevent, the formation of alpha-synuclein toxic species in a rat model of Parkinson’s disease. Human Molecular Genetics, 18, 872–887.

    CAS  PubMed  Google Scholar 

  • Bartels, T., Choi, J. G., & Selkoe, D. J. (2011). Alpha-synuclein occurs physiologically as a helically folded tetramer that resists aggregation. Nature, 477, 107–110.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Beach, T. G., Adler, C. H., Lue, L., Sue, L. I., Bachalakuri, J., Henry-Watson, J., Sasse, J., Boyer, S., Shirohi, S., Brooks, R., Eschbacher, J., White, C. L., 3rd, Akiyama, H., Caviness, J., Shill, H. A., Connor, D. J., Sabbagh, M. N., & Walker, D. G. (2009). Unified staging system for Lewy body disorders: Correlation with nigrostriatal degeneration, cognitive impairment and motor dysfunction. Acta Neuropathologica, 117, 613–634.

    PubMed Central  PubMed  Google Scholar 

  • Braak, H., Del Tredici, K., Rub, U., de Vos, R. A., Jansen Steur, E. N., & Braak, E. (2003). Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiology of Aging, 24, 197–211.

    PubMed  Google Scholar 

  • Braak, H., Ghebremedhin, E., Rub, U., Bratzke, H., & Del Tredici, K. (2004). Stages in the development of Parkinson’s disease-related pathology. Cell and Tissue Research, 318, 121–134.

    PubMed  Google Scholar 

  • Braak, H., Sastre, M., & Del Tredici, K. (2007). Development of alpha-synuclein immunoreactive astrocytes in the forebrain parallels stages of intraneuronal pathology in sporadic Parkinson’s disease. Acta Neuropathologica, 114, 231–241.

    CAS  PubMed  Google Scholar 

  • Burre, J., Sharma, M., Tsetsenis, T., Buchman, V., Etherton, M. R., & Sudhof, T. C. (2010). Alpha-synuclein promotes SNARE-complex assembly in vivo and in vitro. Science, 329, 1663–1667.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bussell, R., Jr., & Eliezer, D. (2003). A structural and functional role for 11-mer repeats in alpha-synuclein and other exchangeable lipid binding proteins. Journal of Molecular Biology, 329, 763–778.

    CAS  PubMed  Google Scholar 

  • Cabin, D. E., Gispert-Sanchez, S., Murphy, D., Auburger, G., Myers, R. R., & Nussbaum, R. L. (2005). Exacerbated synucleinopathy in mice expressing A53T SNCA on a Snca null background. Neurobiology of Aging, 26, 25–35.

    CAS  PubMed  Google Scholar 

  • Chandra, S., Chen, X., Rizo, J., Jahn, R., & Sudhof, T. C. (2003). A broken alpha-helix in folded alpha-synuclein. The Journal of Biological Chemistry, 278, 15313–15318.

    CAS  PubMed  Google Scholar 

  • Chandra, S., Fornai, F., Kwon, H. B., Yazdani, U., Atasoy, D., Liu, X., Hammer, R. E., Battaglia, G., German, D. C., Castillo, P. E., & Sudhof, T. C. (2004). Double-knockout mice for alpha- and beta-synucleins: Effect on synaptic functions. Proceedings of the National Academy of Sciences of the United States of America, 101, 14966–14971.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chen, L., & Feany, M. B. (2005). Alpha-synuclein phosphorylation controls neurotoxicity and inclusion formation in a Drosophila model of Parkinson disease. Nature Neuroscience, 8, 657–663.

    CAS  PubMed  Google Scholar 

  • Chen, L., Periquet, M., Wang, X., Negro, A., McLean, P. J., Hyman, B. T., & Feany, M. B. (2009). Tyrosine and serine phosphorylation of alpha-synuclein have opposing effects on neurotoxicity and soluble oligomer formation. The Journal of Clinical Investigation, 119, 3257–3265.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chesselet, M. F., & Richter, F. (2011). Modelling of Parkinson’s disease in mice. Lancet Neurology, 10, 1108–1118.

    PubMed  Google Scholar 

  • Cho, M. K., Nodet, G., Kim, H. Y., Jensen, M. R., Bernado, P., Fernandez, C. O., Becker, S., Blackledge, M., & Zweckstetter, M. (2009). Structural characterization of alpha-synuclein in an aggregation prone state. Protein Science: A Publication of the Protein Society, 18, 1840–1846.

    CAS  Google Scholar 

  • Chung, K. K., Dawson, V. L., & Dawson, T. M. (2001). The role of the ubiquitin-proteasomal pathway in Parkinson’s disease and other neurodegenerative disorders. Trends in Neurosciences, 24, S7–S14.

    CAS  PubMed  Google Scholar 

  • Chung, C. Y., Koprich, J. B., Siddiqi, H., & Isacson, O. (2009). Dynamic changes in presynaptic and axonal transport proteins combined with striatal neuroinflammation precede dopaminergic neuronal loss in a rat model of AAV alpha-synucleinopathy. The Journal of Neuroscience, 29, 3365–3373.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Clayton, D. F., & George, J. M. (1998). The synucleins: A family of proteins involved in synaptic function, plasticity, neurodegeneration and disease. Trends in Neurosciences, 21, 249–254.

    CAS  PubMed  Google Scholar 

  • Compta, Y., Parkkinen, L., O’Sullivan, S. S., Vandrovcova, J., Holton, J. L., Collins, C., Lashley, T., Kallis, C., Williams, D. R., de Silva, R., Lees, A. J., & Revesz, T. (2011). Lewy- and Alzheimer-type pathologies in Parkinson’s disease dementia: Which is more important? Brain: A Journal of Neurology, 134, 1493–1505.

    Google Scholar 

  • Conway, K. A., Lee, S. J., Rochet, J. C., Ding, T. T., Williamson, R. E., & Lansbury, P. T., Jr. (2000). Acceleration of oligomerization, not fibrillization, is a shared property of both alpha-synuclein mutations linked to early-onset Parkinson’s disease: Implications for pathogenesis and therapy. Proceedings of the National Academy of Sciences of the United States of America, 97, 571–576.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Conway, K. A., Rochet, J. C., Bieganski, R. M., & Lansbury, P. T., Jr. (2001). Kinetic stabilization of the alpha-synuclein protofibril by a dopamine-alpha-synuclein adduct. Science, 294, 1346–1349.

    CAS  PubMed  Google Scholar 

  • Cooper, A. A., Gitler, A. D., Cashikar, A., Haynes, C. M., Hill, K. J., Bhullar, B., Liu, K., Xu, K., Strathearn, K. E., Liu, F., Cao, S., Caldwell, K. A., Caldwell, G. A., Marsischky, G., Kolodner, R. D., Labaer, J., Rochet, J. C., Bonini, N. M., & Lindquist, S. (2006). Alpha-synuclein blocks ER-Golgi traffic and Rab1 rescues neuron loss in Parkinson’s models. Science, 313, 324–328.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Croisier, E., Moran, L. B., Dexter, D. T., Pearce, R. K., & Graeber, M. B. (2005). Microglial inflammation in the parkinsonian substantia nigra: Relationship to alpha-synuclein deposition. Journal of Neuroinflammation, 2, 14.

    PubMed Central  PubMed  Google Scholar 

  • Crowther, R. A., Jakes, R., Spillantini, M. G., & Goedert, M. (1998). Synthetic filaments assembled from C-terminally truncated alpha-synuclein. FEBS Letters, 436, 309–312.

    CAS  PubMed  Google Scholar 

  • Cuervo, A. M., Stefanis, L., Fredenburg, R., Lansbury, P. T., & Sulzer, D. (2004). Impaired degradation of mutant alpha-synuclein by chaperone-mediated autophagy. Science, 305, 1292–1295.

    CAS  PubMed  Google Scholar 

  • Danzer, K. M., Haasen, D., Karow, A. R., Moussaud, S., Habeck, M., Giese, A., Kretzschmar, H., Hengerer, B., & Kostka, M. (2007). Different species of alpha-synuclein oligomers induce calcium influx and seeding. The Journal of Neuroscience, 27, 9220–9232.

    CAS  PubMed  Google Scholar 

  • Dauer, W., Kholodilov, N., Vila, M., Trillat, A. C., Goodchild, R., Larsen, K. E., Staal, R., Tieu, K., Schmitz, Y., Yuan, C. A., Rocha, M., Jackson-Lewis, V., Hersch, S., Sulzer, D., Przedborski, S., Burke, R. E., & Hen, R. (2002). Resistance of alpha-synuclein null mice to the parkinsonian neurotoxin MPTP. Proceedings of the National Academy of Sciences of the United States of America, 99, 14524–14529.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Desplats, P., Lee, H. J., Bae, E. J., Patrick, C., Rockenstein, E., Crews, L., Spencer, B., Masliah, E., & Lee, S. J. (2009). Inclusion formation and neuronal cell death through neuron-to-neuron transmission of alpha-synuclein. Proceedings of the National Academy of Sciences of the United States of America, 106, 13010–13015.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Devic, I., Hwang, H., Edgar, J. S., Izutsu, K., Presland, R., Pan, C., Goodlett, D. R., Wang, Y., Armaly, J., Tumas, V., Zabetian, C. P., Leverenz, J. B., Shi, M., & Zhang, J. (2011). Salivary alpha-synuclein and DJ-1: Potential biomarkers for Parkinson’s disease. Brain: A Journal of Neurology, 134, e178.

    Google Scholar 

  • Dickson, D. W., Braak, H., Duda, J. E., Duyckaerts, C., Gasser, T., Halliday, G. M., Hardy, J., Leverenz, J. B., Del Tredici, K., Wszolek, Z. K., & Litvan, I. (2009). Neuropathological assessment of Parkinson’s disease: Refining the diagnostic criteria. Lancet Neurology, 8, 1150–1157.

    CAS  PubMed  Google Scholar 

  • Dufty, B. M., Warner, L. R., Hou, S. T., Jiang, S. X., Gomez-Isla, T., Leenhouts, K. M., Oxford, J. T., Feany, M. B., Masliah, E., & Rohn, T. T. (2007). Calpain-cleavage of {alpha}-synuclein: Connecting proteolytic processing to disease-linked aggregation. The American Journal of Pathology, 170, 1725–1738.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Durrenberger, P. F., Filiou, M. D., Moran, L. B., Michael, G. J., Novoselov, S., Cheetham, M. E., Clark, P., Pearce, R. K., & Graeber, M. B. (2009). DnaJB6 is present in the core of Lewy bodies and is highly up-regulated in parkinsonian astrocytes. Journal of Neuroscience Research, 87, 238–245.

    CAS  PubMed  Google Scholar 

  • Ebrahimi-Fakhari, D., Cantuti-Castelvetri, I., Fan, Z., Rockenstein, E., Masliah, E., Hyman, B. T., McLean, P. J., & Unni, V. K. (2011). Distinct roles in vivo for the ubiquitin-proteasome system and the autophagy-lysosomal pathway in the degradation of alpha-synuclein. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 31, 14508–14520.

    CAS  Google Scholar 

  • Ellis, C. E., Schwartzberg, P. L., Grider, T. L., Fink, D. W., & Nussbaum, R. L. (2001). Alpha-synuclein is phosphorylated by members of the Src family of protein-tyrosine kinases. The Journal of Biological Chemistry, 276, 3879–3884.

    CAS  PubMed  Google Scholar 

  • Emmanouilidou, E., Stefanis, L., & Vekrellis, K. (2010). Cell-produced alpha-synuclein oligomers are targeted to, and impair, the 26S proteasome. Neurobiology of Aging, 31, 953–968.

    CAS  PubMed  Google Scholar 

  • Emmer, K. L., Waxman, E. A., Covy, J. P., & Giasson, B. I. (2011). E46K human alpha-synuclein transgenic mice develop Lewy-like and tau pathology associated with age-dependent, detrimental motor impairment. The Journal of Biological Chemistry, 286, 35104–35118.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Engelender, S., Kaminsky, Z., Guo, X., Sharp, A. H., Amaravi, R. K., Kleiderlein, J. J., Margolis, R. L., Troncoso, J. C., Lanahan, A. A., Worley, P. F., Dawson, V. L., Dwson, T. M., & Ross, C. A. (1999). Synphilin-1 associates with alpha-synuclein and promotes the formation of cytosolic inclusions. Nature Genetics, 22, 110–114.

    CAS  PubMed  Google Scholar 

  • Eslamboli, A., Romero-Ramos, M., Burger, C., Bjorklund, T., Muzyczka, N., Mandel, R. J., Baker, H., Ridley, R. M., & Kirik, D. (2007). Long-term consequences of human alpha-synuclein overexpression in the primate ventral midbrain. Brain, 130, 799–815.

    PubMed  Google Scholar 

  • Fjorback, A. W., Varming, K., & Jensen, P. H. (2007). Determination of alpha-synuclein concentration in human plasma using ELISA. Scandinavian Journal of Clinical and Laboratory Investigation, 67, 431–435.

    CAS  PubMed  Google Scholar 

  • Fernagut, et al. (2007). Behavioral and histopathological consequences of paraquat intoxication in mice: effects of alpha-synuclein over-expression. In: Fernagut, P. O., Hutson, C. B., Fleming, S. M., Tetreaut, N. A., Salcedo, J., Masliah, E., & Chesselet, M. F. Synapse, 61(12):991–1001.

    Google Scholar 

  • Fleming, S. M., & Chesselet, M. F. (2006). Behavioral phenotypes and pharmacology in genetic mouse models of Parkinsonism. Behavioural Pharmacology, 17, 383–391.

    PubMed  Google Scholar 

  • Fleming, S. M., Salcedo, J., Fernagut, P. O., Rockenstein, E., Masliah, E., Levine, M. S., & Chesselet, M. F. (2004). Early and progressive sensorimotor anomalies in mice overexpressing wild-type human alpha-synuclein. The Journal of Neuroscience, 24, 9434–9440.

    CAS  PubMed  Google Scholar 

  • Fleming, S. M., Tetreault, N. A., Mulligan, C. K., Hutson, C. B., Masliah, E., & Chesselet, M. F. (2008). Olfactory deficits in mice overexpressing human wildtype alpha-synuclein. The European Journal of Neuroscience, 28, 247–256.

    PubMed Central  PubMed  Google Scholar 

  • Fountaine, T. M., & Wade-Martins, R. (2007). RNA interference-mediated knockdown of alpha-synuclein protects human dopaminergic neuroblastoma cells from MPP(+) toxicity and reduces dopamine transport. Journal of Neuroscience Research, 85, 351–363.

    CAS  PubMed  Google Scholar 

  • Freichel, C., Neumann, M., Ballard, T., Muller, V., Woolley, M., Ozmen, L., Borroni, E., Kretzschmar, H. A., Haass, C., Spooren, W., & Kahle, P. J. (2007). Age-dependent cognitive decline and amygdala pathology in alpha-synuclein transgenic mice. Neurobiology of Aging, 28, 1421–1435.

    CAS  PubMed  Google Scholar 

  • Fujiwara, H., Hasegawa, M., Dohmae, N., Kawashima, A., Masliah, E., Goldberg, M. S., Shen, J., Takio, K., & Iwatsubo, T. (2002). Alpha-synuclein is phosphorylated in synucleinopathy lesions. Nature Cell Biology, 4, 160–164.

    CAS  PubMed  Google Scholar 

  • Gai, W., Power, J., Blumberg, P., & Blessing, W. (1998). Multiple-system atrophy: A new α-synuclein disease? Lancet, 352, 547–548.

    CAS  PubMed  Google Scholar 

  • Gao, H. M., Kotzbauer, P. T., Uryu, K., Leight, S., Trojanowski, J. Q., & Lee, V. M. (2008). Neuroinflammation and oxidation/nitration of alpha-synuclein linked to dopaminergic neurodegeneration. The Journal of Neuroscience, 28, 7687–7698.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gao, H. M., Zhang, F., Zhou, H., Kam, W., Wilson, B., & Hong, J. S. (2011). Neuroinflammation and alpha-synuclein dysfunction potentiate each other, driving chronic progression of neurodegeneration in a mouse model of Parkinson’s disease. Environmental Health Perspectives, 119, 807–814.

    CAS  PubMed Central  PubMed  Google Scholar 

  • George, J., Jin, H., Woods, W., & Clayton, D. (1995). Characterization of a novel protein regulated during the critical period for song learning in the zebra finch. Neuron, 15, 361–372.

    CAS  PubMed  Google Scholar 

  • Giasson, B. I., Duda, J. E., Quinn, S. M., Zhang, B., Trojanowski, J. Q., & Lee, V. M. (2002). Neuronal alpha-Synucleinopathy with severe movement disorder in mice expressing A53T human alpha-synuclein. Neuron, 34, 521–533.

    CAS  PubMed  Google Scholar 

  • Gispert, S., Del Turco, D., Garrett, L., Chen, A., Bernard, D. J., Hamm-Clement, J., Korf, H. W., Deller, T., Braak, H., Auburger, G., & Nussbaum, R. L. (2003). Transgenic mice expressing mutant A53T human alpha-synuclein show neuronal dysfunction in the absence of aggregate formation. Molecular and Cellular Neurosciences, 24, 419–429.

    CAS  PubMed  Google Scholar 

  • Gomez-Isla, T., Irizarry, M. C., Mariash, A., Cheung, B., Soto, O., Schrump, S., Sondel, J., Kotilinek, L., Day, J., Schwarzschild, M. A., Cha, J. H., Newell, K., Miller, D. W., Ueda, K., Young, A. B., Hyman, B. T., & Ashe, K. H. (2003). Motor dysfunction and gliosis with preserved dopaminergic markers in human alpha-synuclein A30P transgenic mice. Neurobiology of Aging, 24, 245–258.

    CAS  PubMed  Google Scholar 

  • Gomperts, S. N., Rentz, D. M., Moran, E., Becker, J. A., Locascio, J. J., Klunk, W. E., Mathis, C. A., Elmaleh, D. R., Shoup, T., Fischman, A. J., Hyman, B. T., Growdon, J. H., & Johnson, K. A. (2008). Imaging amyloid deposition in Lewy body diseases. Neurology, 71, 903–910.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gorbatyuk, O. S., Li, S., Sullivan, L. F., Chen, W., Kondrikova, G., Manfredsson, F. P., Mandel, R. J., & Muzyczka, N. (2008). The phosphorylation state of Ser-129 in human alpha-synuclein determines neurodegeneration in a rat model of Parkinson disease. Proceedings of the National Academy of Sciences of the United States of America, 105, 763–768.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Greffard, S., Verny, M., Bonnet, A. M., Beinis, J. Y., Gallinari, C., Meaume, S., Piette, F., Hauw, J. J., & Duyckaerts, C. (2006). Motor score of the Unified Parkinson Disease Rating Scale as a good predictor of Lewy body-associated neuronal loss in the substantia nigra. Archives of Neurology, 63, 584–588.

    PubMed  Google Scholar 

  • Greffard, S., Verny, M., Bonnet, A. M., Seilhean, D., Hauw, J. J., & Duyckaerts, C. (2010). A stable proportion of Lewy body bearing neurons in the substantia nigra suggests a model in which the Lewy body causes neuronal death. Neurobiology of Aging, 31, 99–103.

    CAS  PubMed  Google Scholar 

  • Greten-Harrison, B., Polydoro, M., Morimoto-Tomita, M., Diao, L., Williams, A. M., Nie, E. H., Makani, S., Tian, N., Castillo, P. E., Buchman, V. L., & Chandra, S. S. (2010). Alphabetagamma-synuclein triple knockout mice reveal age-dependent neuronal dysfunction. Proceedings of the National Academy of Sciences of the United States of America, 107, 19573–19578.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Haggerty, T., Credle, J., Rodriguez, O., Wills, J., Oaks, A. W., Masliah, E., & Sidhu, A. (2011). Hyperphosphorylated Tau in an alpha-synuclein-overexpressing transgenic model of Parkinson’s disease. The European Journal of Neuroscience, 33, 1598–1610.

    PubMed Central  PubMed  Google Scholar 

  • Halliday, G. M., & McCann, H. (2010). The progression of pathology in Parkinson’s disease. Annals of the New York Academy of Sciences, 1184, 188–195.

    PubMed  Google Scholar 

  • Halliday, G. M., & Stevens, C. H. (2011). Glia: Initiators and progressors of pathology in Parkinson’s disease. Movement Disorders, 26, 6–17.

    PubMed  Google Scholar 

  • Halliday, G. M., Holton, J. L., Revesz, T., & Dickson, D. W. (2011a). Neuropathology underlying clinical variability in patients with synucleinopathies. Acta Neuropathologica, 122, 187–204.

    CAS  PubMed  Google Scholar 

  • Halliday, G. M., Song, Y. J., & Harding, A. J. (2011b). Striatal beta-amyloid in dementia with Lewy bodies but not Parkinson’s disease. Journal of Neural Transmission, 118, 713–719.

    CAS  PubMed  Google Scholar 

  • Harding, A. J., Stimson, E., Henderson, J. M., & Halliday, G. M. (2002). Clinical correlates of selective pathology in the amygdala of patients with Parkinson’s disease. Brain: A Journal of Neurology, 125, 2431–2445.

    Google Scholar 

  • Hirsch, E. C., Vyas, S., & Hunot, S. (2012). Neuroinflammation in Parkinson’s disease. Parkinsonism & Related Disorders, 18(Suppl 1), S210–S212.

    Google Scholar 

  • Hoozemans, J. J., van Haastert, E. S., Eikelenboom, P., de Vos, R. A., Rozemuller, J. M., & Scheper, W. (2007). Activation of the unfolded protein response in Parkinson’s disease. Biochemical and Biophysical Research Communications, 354, 707–711.

    CAS  PubMed  Google Scholar 

  • Hsu, L. J., Sagara, Y., Arroyo, A., Rockenstein, E., Sisk, A., Mallory, M., Wong, J., Takenouchi, T., Hashimoto, M., & Masliah, E. (2000). Alpha-synuclein promotes mitochondrial deficit and oxidative stress. The American Journal of Pathology, 157, 401–410.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Huang, Y., Cheung, L., Rowe, D., & Halliday, G. (2004). Genetic contributions to Parkinson’s disease. Brain Research. Brain Research Reviews, 46, 44–70.

    CAS  PubMed  Google Scholar 

  • Inglis, K. J., Chereau, D., Brigham, E. F., Chiou, S. S., Schobel, S., Frigon, N. L., Yu, M., Caccavello, R. J., Nelson, S., Motter, R., Wright, S., Chian, D., Santiago, P., Soriano, F., Ramos, C., Powell, K., Goldstein, J. M., Babcock, M., Yednock, T., Bard, F., Basi, G. S., Sham, H., Chilcote, T. J., McConlogue, L., Griswold-Prenner, I., & Anderson, J. P. (2009). Polo-like kinase 2 (PLK2) phosphorylates alpha-synuclein at serine 129 in central nervous system. The Journal of Biological Chemistry, 284, 2598–2602.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ishida, Y., Nagai, A., Kobayashi, S., & Kim, S. U. (2006). Upregulation of protease-activated receptor-1 in astrocytes in Parkinson disease: Astrocyte-mediated neuroprotection through increased levels of glutathione peroxidase. Journal of Neuropathology and Experimental Neurology, 65, 66–77.

    CAS  PubMed  Google Scholar 

  • Jakes, R., Spillantini, M. G., & Goedert, M. (1994). Identification of two distinct synucleins from human brain. FEBS Letters, 345, 27–32.

    CAS  PubMed  Google Scholar 

  • Jensen, P., Li, J.-Y., Dahlstrom, A., & Dotti, C. (1999). Axonal transport of synucleins is mediated by all rate components. Europian Journal of Neuroscience, 11, 3369–3376.

    Google Scholar 

  • Kahle, P. J., Neumann, M., Ozmen, L., Muller, V., Odoy, S., Okamoto, N., Jacobsen, H., Iwatsubo, T., Trojanowski, J. Q., Takahashi, H., Wakabayashi, K., Bogdanovic, N., Riederer, P., Kretzschmar, H. A., & Haass, C. (2001). Selective insolubility of alpha-synuclein in human Lewy body diseases is recapitulated in a transgenic mouse model. The American Journal of Pathology, 159, 2215–2225.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kamp, F., Exner, N., Lutz, A. K., Wender, N., Hegermann, J., Brunner, B., Nuscher, B., Bartels, T., Giese, A., Beyer, K., Eimer, S., Winklhofer, K. F., & Haass, C. (2010). Inhibition of mitochondrial fusion by alpha-synuclein is rescued by PINK1, Parkin and DJ-1. The EMBO Journal, 29, 3571–3589.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Karpinar, D. P., Balija, M. B., Kugler, S., Opazo, F., Rezaei-Ghaleh, N., Wender, N., Kim, H. Y., Taschenberger, G., Falkenburger, B. H., Heise, H., Kumar, A., Riedel, D., Fichtner, L., Voigt, A., Braus, G. H., Giller, K., Becker, S., Herzig, A., Baldus, M., Jackle, H., Eimer, S., Schulz, J. B., Griesinger, C., & Zweckstetter, M. (2009). Pre-fibrillar alpha-synuclein variants with impaired beta-structure increase neurotoxicity in Parkinson’s disease models. The EMBO Journal, 28, 3256–3268.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kayed, R., Head, E., Sarsoza, F., Saing, T., Cotman, C. W., Necula, M., Margol, L., Wu, J., Breydo, L., Thompson, J. L., Rasool, S., Gurlo, T., Butler, P., & Glabe, C. G. (2007). Fibril specific, conformation dependent antibodies recognize a generic epitope common to amyloid fibrils and fibrillar oligomers that is absent in prefibrillar oligomers. Molecular Neurodegeneration, 2, 18.

    PubMed Central  PubMed  Google Scholar 

  • Kim, H. J., Lee, D., Lee, C. H., Chung, K. C., Kim, J., & Paik, S. R. (2006). Calpain-resistant fragment(s) of alpha-synuclein regulates the synuclein-cleaving activity of 20S proteasome. Archives of Biochemistry and Biophysics, 455, 40–47.

    CAS  PubMed  Google Scholar 

  • Kirik, D., Rosenblad, C., Burger, C., Lundberg, C., Johansen, T. E., Muzyczka, N., Mandel, R. J., & Bjorklund, A. (2002). Parkinson-like neurodegeneration induced by targeted overexpression of alpha-synuclein in the nigrostriatal system. The Journal of Neuroscience, 22, 2780–2791.

    CAS  PubMed  Google Scholar 

  • Klegeris, A., Giasson, B. I., Zhang, H., Maguire, J., Pelech, S., & McGeer, P. L. (2006). Alpha-synuclein and its disease-causing mutants induce ICAM-1 and IL-6 in human astrocytes and astrocytoma cells. The FASEB Journal: Official publication of the Federation of American Societies for Experimental Biology, 20, 2000–2008.

    CAS  Google Scholar 

  • Klucken, J., Outeiro, T. F., Nguyen, P., McLean, P. J., & Hyman, B. T. (2006). Detection of novel intracellular alpha-synuclein oligomeric species by fluorescence lifetime imaging. The FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology, 20, 2050–2057.

    CAS  Google Scholar 

  • Knott, C., Wilkin, G. P., & Stern, G. (1999). Astrocytes and microglia in the substantia nigra and caudate-putamen in Parkinson’s disease. Parkinsonism & Related Disorders, 5, 115–122.

    CAS  Google Scholar 

  • Koob, A. O., Ubhi, K., Paulsson, J. F., Kelly, J., Rockenstein, E., Mante, M., Adame, A., & Masliah, E. (2010). Lovastatin ameliorates alpha-synuclein accumulation and oxidation in transgenic mouse models of alpha-synucleinopathies. Experimental Neurology, 221, 267–274.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kordower, J. H., Chu, Y., Hauser, R. A., Freeman, T. B., & Olanow, C. W. (2008). Lewy body-like pathology in long-term embryonic nigral transplants in Parkinson’s disease. Nature Medicine, 14, 504–506.

    CAS  PubMed  Google Scholar 

  • Kragh, C. L., Lund, L. B., Febbraro, F., Hansen, H. D., Gai, W. P., El-Agnaf, O., Richter-Landsberg, C., & Jensen, P. H. (2009). {alpha}-synuclein aggregation and Ser-129 phosphorylation-dependent cell death in oligodendroglial cells. The Journal of Biological Chemistry, 284, 10211–10222.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kruger, R., Kuhn, W., Muller, T., Woitalla, D., Graeber, M., Kosel, S., Przuntek, H., Epplen, J., Schols, L., & Reiss, O. (1998). Ala30Pro mutation in the gene encoding α-synuclein in Parkinson’s disease. Nature Genetics, 18, 106–108.

    CAS  PubMed  Google Scholar 

  • Kuo, Y. M., Li, Z., Jiao, Y., Gaborit, N., Pani, A. K., Orrison, B. M., Bruneau, B. G., Giasson, B. I., Smeyne, R. J., Gershon, M. D., & Nussbaum, R. L. (2010). Extensive enteric nervous system abnormalities in mice transgenic for artificial chromosomes containing Parkinson disease-associated alpha-synuclein gene mutations precede central nervous system changes. Human Molecular Genetics, 19, 1633–1650.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lam, H. A., Wu, N., Cely, I., Kelly, R. L., Hean, S., Richter, F., Magen, I., Cepeda, C., Ackerson, L. C., Walwyn, W., Masliah, E., Chesselet, M. F., Levine, M. S., & Maidment, N. T. (2011). Elevated tonic extracellular dopamine concentration and altered dopamine modulation of synaptic activity precede dopamine loss in the striatum of mice overexpressing human alpha-synuclein. Journal of Neuroscience Research, 89, 1091–1102.

    CAS  PubMed  Google Scholar 

  • Lashuel, H. A., Petre, B. M., Wall, J., Simon, M., Nowak, R. J., Walz, T., & Lansbury, P. T., Jr. (2002). Alpha-synuclein, especially the Parkinson’s disease-associated mutants, forms pore-like annular and tubular protofibrils. Journal of Molecular Biology, 322, 1089–1102.

    CAS  PubMed  Google Scholar 

  • Lee, F. J., Liu, F., Pristupa, Z. B., & Niznik, H. B. (2001). Direct binding and functional coupling of alpha-synuclein to the dopamine transporters accelerate dopamine-induced apoptosis. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology, 15, 916–926.

    CAS  Google Scholar 

  • Lee, M. K., Stirling, W., Xu, Y., Xu, X., Qui, D., Mandir, A. S., Dawson, T. M., Copeland, N. G., Jenkins, N. A., & Price, D. L. (2002). Human alpha-synuclein-harboring familial Parkinson’s disease-linked Ala-53 –> Thr mutation causes neurodegenerative disease with alpha-synuclein aggregation in transgenic mice. Proceedings of the National Academy of Sciences of the United States of America, 99, 8968–8973.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lee, H. J., Patel, S., & Lee, S. J. (2005). Intravesicular localization and exocytosis of alpha-synuclein and its aggregates. The Journal of Neuroscience, 25, 6016–6024.

    CAS  PubMed  Google Scholar 

  • Lee, H. J., Suk, J. E., Patrick, C., Bae, E. J., Cho, J. H., Rho, S., Hwang, D., Masliah, E., & Lee, S. J. (2010). Direct transfer of alpha-synuclein from neuron to astroglia causes inflammatory responses in synucleinopathies. The Journal of Biological Chemistry, 285, 9262–9272.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lee, K. W., Chen, W., Junn, E., Im, J. Y., Grosso, H., Sonsalla, P. K., Feng, X., Ray, N., Fernandez, J. R., Chao, Y., Masliah, E., Voronkov, M., Braithwaite, S. P., Stock, J. B., & Mouradian, M. M. (2011). Enhanced phosphatase activity attenuates alpha-synucleinopathy in a mouse model. The Journal of Neuroscience, 31, 6963–6971.

    CAS  PubMed  Google Scholar 

  • Leong, S. L., Cappai, R., Barnham, K. J., & Pham, C. L. (2009). Modulation of alpha-synuclein aggregation by dopamine: A review. Neurochemical Research, 34, 1838–1846.

    CAS  PubMed  Google Scholar 

  • Li, J. Y., Englund, E., Holton, J. L., Soulet, D., Hagell, P., Lees, A. J., Lashley, T., Quinn, N. P., Rehncrona, S., Bjorklund, A., Widner, H., Revesz, T., Lindvall, O., & Brundin, P. (2008). Lewy bodies in grafted neurons in subjects with Parkinson’s disease suggest host-to-graft disease propagation. Nature Medicine, 14, 501–503.

    CAS  PubMed  Google Scholar 

  • Lin, X., Parisiadou, L., Gu, X. L., Wang, L., Shim, H., Sun, L., Xie, C., Long, C. X., Yang, W. J., Ding, J., Chen, Z. Z., Gallant, P. E., Tao-Cheng, J. H., Rudow, G., Troncoso, J. C., Liu, Z., Li, Z., & Cai, H. (2009). Leucine-rich repeat kinase 2 regulates the progression of neuropathology induced by Parkinson’s-disease-related mutant alpha-synuclein. Neuron, 64, 807–827.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lindersson, E., Beedholm, R., Hojrup, P., Moos, T., Gai, W., Hendil, K. B., & Jensen, P. H. (2004). Proteasomal inhibition by alpha-synuclein filaments and oligomers. The Journal of Biological Chemistry, 279, 12924–12934.

    CAS  PubMed  Google Scholar 

  • Liu, C. W., Corboy, M. J., DeMartino, G. N., & Thomas, P. J. (2003). Endoproteolytic activity of the proteasome. Science, 299, 408–411.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lo Bianco, C., Ridet, J. L., Schneider, B. L., Deglon, N., & Aebischer, P. (2002). Alpha-synucleinopathy and selective dopaminergic neuron loss in a rat lentiviral-based model of Parkinson’s disease. Proceedings of the National Academy of Sciences of the United States of America, 99, 10813–10818.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lo Bianco, C., Schneider, B. L., Bauer, M., Sajadi, A., Brice, A., Iwatsubo, T., & Aebischer, P. (2004). Lentiviral vector delivery of parkin prevents dopaminergic degeneration in an alpha-synuclein rat model of Parkinson’s disease. Proceedings of the National Academy of Sciences of the United States of America, 101, 17510–17515.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lotharius, J., Barg, S., Wiekop, P., Lundberg, C., Raymon, H. K., & Brundin, P. (2002). Effect of mutant alpha-synuclein on dopamine homeostasis in a new human mesencephalic cell line. The Journal of Biological Chemistry, 277, 38884–38894.

    CAS  PubMed  Google Scholar 

  • Lou, H., Montoya, S. E., Alerte, T. N., Wang, J., Wu, J., Peng, X., Hong, C. S., Friedrich, E. E., Mader, S. A., Pedersen, C. J., Marcus, B. S., McCormack, A. L., Di Monte, D. A., Daubner, S. C., & Perez, R. G. (2010). Serine 129 phosphorylation reduces the ability of alpha-synuclein to regulate tyrosine hydroxylase and protein phosphatase 2A in vitro and in vivo. The Journal of Biological Chemistry, 285, 17648–17661.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Luk, K. C., Kehm, V. M., Zhang, B., O’ Brien, P., Trojanowski, J. Q., & Lee, V. M. (2012). Intracerebral inoculation of pathological alpha-synuclein initiates a rapidly progressive neurodegenerative alpha-synucleinopathy in mice. The Journal of Experimental Medicine, 209(5), 975–986.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Magen, I., & Chesselet, M. F. (2010). Genetic mouse models of Parkinson’s disease The state of the art. Progress in Brain Research, 184, 53–87.

    CAS  PubMed  Google Scholar 

  • Maingay, M., Romero-Ramos, M., Carta, M., & Kirik, D. (2006). Ventral tegmental area dopamine neurons are resistant to human mutant alpha-synuclein overexpression. Neurobiology of Disease, 23, 522–532.

    CAS  PubMed  Google Scholar 

  • Manning-Bog, A. B., McCormack, A. L., Purisai, M. G., Bolin, L. M., & Di Monte, D. A. (2003). Alpha-synuclein overexpression protects against paraquat-induced neurodegeneration. Journal of Neuroscience, 23, 3095–3099.

    CAS  PubMed  Google Scholar 

  • Maroteaux, L., Campanelli, J., & Scheller, R. (1988). Synuclein: A neuron-specific protein localized to the nucleus and presynaptic nerve terminal. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 8, 2804–2815.

    CAS  Google Scholar 

  • Martin, L. J., Pan, Y., Price, A. C., Sterling, W., Copeland, N. G., Jenkins, N. A., Price, D. L., & Lee, M. K. (2006). Parkinson’s disease alpha-synuclein transgenic mice develop neuronal mitochondrial degeneration and cell death. The Journal of Neuroscience, 26, 41–50.

    CAS  PubMed  Google Scholar 

  • Masliah, E., Rockenstein, E., Veinbergs, I., Mallory, M., Hashimoto, M., Takeda, A., Sagara, Y., Sisk, A., & Mucke, L. (2000). Dopaminergic loss and inclusion body formation in alpha-synuclein mice: Implications for neurodegenerative disorders. Science, 287, 1265–1269.

    CAS  PubMed  Google Scholar 

  • Masliah, E., Rockenstein, E., Veinbergs, I., Sagara, Y., Mallory, M., Hashimoto, M., & Mucke, L. (2001). Beta-amyloid peptides enhance alpha-synuclein accumulation and neuronal deficits in a transgenic mouse model linking Alzheimer’s disease and Parkinson’s disease. Proceedings of the National Academy of Sciences of the United States of America, 98, 12245–12250.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Masliah, E., Rockenstein, E., Adame, A., Alford, M., Crews, L., Hashimoto, M., Seubert, P., Lee, M., Goldstein, J., Chilcote, T., Games, D., & Schenk, D. (2005). Effects of alpha-synuclein immunization in a mouse model of Parkinson’s disease. Neuron, 46, 857–868.

    CAS  PubMed  Google Scholar 

  • Masuda, M., Dohmae, N., Nonaka, T., Oikawa, T., Hisanaga, S., Goedert, M., & Hasegawa, M. (2006). Cysteine misincorporation in bacterially expressed human alpha-synuclein. FEBS Letters, 580, 1775–1779.

    CAS  PubMed  Google Scholar 

  • Matsuoka, Y., Vila, M., Lincoln, S., McCormack, A., Picciano, M., LaFrancois, J., Yu, X., Dickson, D., Langston, W. J., McGowan, E., Farrer, M., Hardy, J., Duff, K., Przedborski, S., & Di Monte, D. A. (2001). Lack of nigral pathology in transgenic mice expressing human alpha-synuclein driven by the tyrosine hydroxylase promoter. Neurobiology of Disease, 8, 535–539.

    CAS  PubMed  Google Scholar 

  • Matthews, F. E., Brayne, C., Lowe, J., McKeith, I., Wharton, S. B., & Ince, P. (2009). Epidemiological pathology of dementia: Attributable-risks at death in the Medical Research Council Cognitive Function and Ageing study. PLoS Medicine, 6, e1000180.

    PubMed Central  PubMed  Google Scholar 

  • Mazzulli, J. R., Mishizen, A. J., Giasson, B. I., Lynch, D. R., Thomas, S. A., Nakashima, A., Nagatsu, T., Ota, A., & Ischiropoulos, H. (2006). Cytosolic catechols inhibit alpha-synuclein aggregation and facilitate the formation of intracellular soluble oligomeric intermediates. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 26, 10068–10078.

    CAS  Google Scholar 

  • Mbefo, M. K., Paleologou, K. E., Boucharaba, A., Oueslati, A., Schell, H., Fournier, M., Olschewski, D., Yin, G., Zweckstetter, M., Masliah, E., Kahle, P. J., Hirling, H., & Lashuel, H. A. (2010). Phosphorylation of synucleins by members of the Polo-like kinase family. The Journal of Biological Chemistry, 285, 2807–2822.

    CAS  PubMed Central  PubMed  Google Scholar 

  • McFarland, M. A., Ellis, C. E., Markey, S. P., & Nussbaum, R. L. (2008). Proteomics analysis identifies phosphorylation-dependent alpha-synuclein protein interactions. Molecular & Cellular Proteomics, 7, 2123–2137.

    CAS  Google Scholar 

  • McFarland, N. R., Fan, Z., Xu, K., Schwarzschild, M. A., Feany, M. B., Hyman, B. T., & McLean, P. J. (2009). Alpha-synuclein S129 phosphorylation mutants do not alter nigrostriatal toxicity in a rat model of Parkinson disease. Journal of Neuropathology and Experimental Neurology, 68, 515–524.

    CAS  PubMed Central  PubMed  Google Scholar 

  • McKeith, I. G., Dickson, D. W., Lowe, J., Emre, M., O’Brien, J. T., Feldman, H., Cummings, J., Duda, J. E., Lippa, C., Perry, E. K., Aarsland, D., Arai, H., Ballard, C. G., Boeve, B., Burn, D. J., Costa, D., Del Ser, T., Dubois, B., Galasko, D., Gauthier, S., Goetz, C. G., Gomez-Tortosa, E., Halliday, G., Hansen, L. A., Hardy, J., Iwatsubo, T., Kalaria, R. N., Kaufer, D., Kenny, R. A., Korczyn, A., Kosaka, K., Lee, V. M., Lees, A., Litvan, I., Londos, E., Lopez, O. L., Minoshima, S., Mizuno, Y., Molina, J. A., Mukaetova-Ladinska, E. B., Pasquier, F., Perry, R. H., Schulz, J. B., Trojanowski, J. Q., & Yamada, M. (2005). Diagnosis and management of dementia with Lewy bodies: Third report of the DLB Consortium. Neurology, 65, 1863–1872.

    CAS  PubMed  Google Scholar 

  • McNaught, K., & Jenner, P. (2001). Proteasomal function is impaired in substantial nigra in Parkinson’s disease. Neuroscience Letters, 297, 191–194.

    CAS  PubMed  Google Scholar 

  • McNaught, K. S., Belizaire, R., Isacson, O., Jenner, P., & Olanow, C. W. (2003). Altered proteasomal function in sporadic Parkinson’s disease. Experimental Neurology, 179, 38–46.

    CAS  PubMed  Google Scholar 

  • Michael, G. J., Esmailzadeh, S., Moran, L. B., Christian, L., Pearce, R. K., & Graeber, M. B. (2011). Up-regulation of metallothionein gene expression in Parkinsonian astrocytes. Neurogenetics, 12, 295–305.

    CAS  PubMed  Google Scholar 

  • Miller, D. W., Hague, S. M., Clarimon, J., Baptista, M., Gwinn-Hardy, K., Cookson, M. R., & Singleton, A. B. (2004). Alpha-synuclein in blood and brain from familial Parkinson disease with SNCA locus triplication. Neurology, 62, 1835–1838.

    CAS  PubMed  Google Scholar 

  • Mishizen-Eberz, A. J., Norris, E. H., Giasson, B. I., Hodara, R., Ischiropoulos, H., Lee, V. M., Trojanowski, J. Q., & Lynch, D. R. (2005). Cleavage of alpha-synuclein by calpain: Potential role in degradation of fibrillized and nitrated species of alpha-synuclein. Biochemistry, 44, 7818–7829.

    CAS  PubMed  Google Scholar 

  • Mollenhauer, B., El-Agnaf, O. M., Marcus, K., Trenkwalder, C., & Schlossmacher, M. G. (2010). Quantification of alpha-synuclein in cerebrospinal fluid as a biomarker candidate: Review of the literature and considerations for future studies. Biomarkers in Medicine, 4, 683–699.

    CAS  PubMed  Google Scholar 

  • Murphy, D. D., Rueter, S. M., Trojanowski, J. Q., & Lee, V. M. (2000). Synucleins are developmentally expressed, and alpha-synuclein regulates the size of the presynaptic vesicular pool in primary hippocampal neurons. The Journal of Neuroscience, 20, 3214–3220.

    CAS  PubMed  Google Scholar 

  • Nasstrom, T., Fagerqvist, T., Barbu, M., Karlsson, M., Nikolajeff, F., Kasrayan, A., Ekberg, M., Lannfelt, L., Ingelsson, M., & Bergstrom, J. (2011). The lipid peroxidation products 4-oxo-2-nonenal and 4-hydroxy-2-nonenal promote the formation of alpha-synuclein oligomers with distinct biochemical, morphological, and functional properties. Free Radical Biology & Medicine, 50, 428–437.

    Google Scholar 

  • Neumann, M., Kahle, P. J., Giasson, B. I., Ozmen, L., Borroni, E., Spooren, W., Muller, V., Odoy, S., Fujiwara, H., Hasegawa, M., Iwatsubo, T., Trojanowski, J. Q., Kretzschmar, H. A., & Haass, C. (2002). Misfolded proteinase K-resistant hyperphosphorylated alpha-synuclein in aged transgenic mice with locomotor deterioration and in human alpha-synucleinopathies. The Journal of Clinical Investigation, 110, 1429–1439.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nieto, M., Gil-Bea, F. J., Dalfo, E., Cuadrado, M., Cabodevilla, F., Sanchez, B., Catena, S., Sesma, T., Ribe, E., Ferrer, I., Ramirez, M. J., & Gomez-Isla, T. (2006). Increased sensitivity to MPTP in human alpha-synuclein A30P transgenic mice. Neurobiology of Aging, 27, 848–856.

    CAS  PubMed  Google Scholar 

  • Norris, E. H., Giasson, B. I., Hodara, R., Xu, S., Trojanowski, J. Q., Ischiropoulos, H., & Lee, V. M. (2005). Reversible inhibition of alpha-synuclein fibrillization by dopaminochrome-mediated conformational alterations. The Journal of Biological Chemistry, 280, 21212–21219.

    CAS  PubMed  Google Scholar 

  • Norris, E. H., Uryu, K., Leight, S., Giasson, B. I., Trojanowski, J. Q., & Lee, V. M. (2007). Pesticide exposure exacerbates alpha-synucleinopathy in an A53T transgenic mouse model. American Journal of Pathology, 170, 658–666.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Oksman, M., Tanila, H., & Yavich, L. (2009). Behavioural and neurochemical response of alpha-synuclein A30P transgenic mice to the effects of L-DOPA. Neuropharmacology, 56, 647–652.

    CAS  PubMed  Google Scholar 

  • Ono, K., Ikemoto, M., Kawarabayashi, T., Ikeda, M., Nishinakagawa, T., Hosokawa, M., Shoji, M., Takahashi, M., & Nakashima, M. (2009). A chemical chaperone, sodium 4-phenylbutyric acid, attenuates the pathogenic potency in human alpha-synuclein A30P+ A53T transgenic mice. Parkinsonism & Related Disorders, 15, 649–654.

    Google Scholar 

  • Orr, C. F., Rowe, D. B., Mizuno, Y., Mori, H., & Halliday, G. M. (2005). A possible role for humoral immunity in the pathogenesis of Parkinson’s disease. Brain: A Journal of Neurology, 128, 2665–2674.

    Google Scholar 

  • Orth, M., Tabrizi, S. J., Schapira, A. H., & Cooper, J. M. (2003). Alpha-synuclein expression in HEK293 cells enhances the mitochondrial sensitivity to rotenone. Neuroscience Letters, 351, 29–32.

    CAS  PubMed  Google Scholar 

  • Oueslati, A., Fournier, M., & Lashuel, H. A. (2010). Role of post-translational modifications in modulating the structure, function and toxicity of alpha-synuclein: Implications for Parkinson’s disease pathogenesis and therapies. Progress in Brain Research, 183, 115–145.

    CAS  PubMed  Google Scholar 

  • Outeiro, T. F., Putcha, P., Tetzlaff, J. E., Spoelgen, R., Koker, M., Carvalho, F., Hyman, B. T., & McLean, P. J. (2008). Formation of toxic oligomeric alpha-synuclein species in living cells. PLoS One, 3, e1867.

    PubMed Central  PubMed  Google Scholar 

  • Paleologou, K. E., Schmid, A. W., Rospigliosi, C. C., Kim, H. Y., Lamberto, G. R., Fredenburg, R. A., Lansbury, P. T., Jr., Fernandez, C. O., Eliezer, D., Zweckstetter, M., & Lashuel, H. A. (2008). Phosphorylation at Ser-129 but not the phosphomimics S129E/D inhibits the fibrillation of alpha-synuclein. The Journal of Biological Chemistry, 283, 16895–16905.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Paleologou, K. E., Kragh, C. L., Mann, D. M., Salem, S. A., Al-Shami, R., Allsop, D., Hassan, A. H., Jensen, P. H., & El-Agnaf, O. M. (2009). Detection of elevated levels of soluble alpha-synuclein oligomers in post-mortem brain extracts from patients with dementia with Lewy bodies. Brain: A Journal of Neurology, 132, 1093–1101.

    Google Scholar 

  • Paleologou, K. E., Oueslati, A., Shakked, G., Rospigliosi, C. C., Kim, H. Y., Lamberto, G. R., Fernandez, C. O., Schmid, A., Chegini, F., Gai, W. P., Chiappe, D., Moniatte, M., Schneider, B. L., Aebischer, P., Eliezer, D., Zweckstetter, M., Masliah, E., & Lashuel, H. A. (2010). Phosphorylation at S87 is enhanced in synucleinopathies, inhibits alpha-synuclein oligomerization, and influences synuclein-membrane interactions. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 30, 3184–3198.

    CAS  Google Scholar 

  • Pan-Montojo, F., Anichtchik, O., Dening, Y., Knels, L., Pursche, S., Jung, R., Jackson, S., Gille, G., Spillantini, M. G., Reichmann, H., & Funk, R. H. (2010). Progression of Parkinson’s disease pathology is reproduced by intragastric administration of rotenone in mice. PLoS One, 5, e8762.

    PubMed Central  PubMed  Google Scholar 

  • Perez, R. G., Waymire, J. C., Lin, E., Liu, J. J., Guo, F., & Zigmond, M. J. (2002). A role for alpha-synuclein in the regulation of dopamine biosynthesis. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 22, 3090–3099.

    CAS  Google Scholar 

  • Pienaar, I. S., Gotz, J., & Feany, M. B. (2010). Parkinson’s disease: Insights from non-traditional model organisms. Progress in Neurobiology, 92, 558–571.

    CAS  PubMed  Google Scholar 

  • Polymeropoulos, M., Lavedan, C., Leroy, E., Ide, S., Dehejia, A., Dutra, A., Pike, B., Root, H., Rubenstein, J., Boyer, R., Stenroos, E., Chandrasekharappa, S., Athanassiadou, A., Papapetropulos, T., Johnson, W., Lazzarini, A., Duvoisin, R., Di Iorio, G., Golbe, L., & Nussbaum, R. (1997). Mutation in the α-synuclein gene identified in families with Parkinson’s disease. Science, 276, 2045–2047.

    CAS  PubMed  Google Scholar 

  • Poon, H. F., Frasier, M., Shreve, N., Calabrese, V., Wolozin, B., & Butterfield, D. A. (2005). Mitochondrial associated metabolic proteins are selectively oxidized in A30P alpha-synuclein transgenic mice–a model of familial Parkinson’s disease. Neurobiology of Disease, 18, 492–498.

    CAS  PubMed  Google Scholar 

  • Power, J. H., Shannon, J. M., Blumbergs, P. C., & Gai, W. P. (2002). Nonselenium glutathione peroxidase in human brain: Elevated levels in Parkinson’s disease and dementia with lewy bodies. The American Journal of Pathology, 161, 885–894.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pronin, A. N., Morris, A. J., Surguchov, A., & Benovic, J. L. (2000). Synucleins are a novel class of substrates for G protein-coupled receptor kinases. The Journal of Biological Chemistry, 275, 26515–26522.

    CAS  PubMed  Google Scholar 

  • Ramsey, C. P., Tsika, E., Ischiropoulos, H., & Giasson, B. I. (2010). DJ-1 deficient mice demonstrate similar vulnerability to pathogenic Ala53Thr human alpha-syn toxicity. Human Molecular Genetics, 19, 1425–1437.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rathke-Hartlieb, S., Kahle, P. J., Neumann, M., Ozmen, L., Haid, S., Okochi, M., Haass, C., & Schulz, J. B. (2001). Sensitivity to MPTP is not increased in Parkinson’s disease-associated mutant alpha-synuclein transgenic mice. Journal of Neurochemistry, 77, 1181–1184.

    CAS  PubMed  Google Scholar 

  • Richfield, E. K., Thiruchelvam, M. J., Cory-Slechta, D. A., Wuertzer, C., Gainetdinov, R. R., Caron, M. G., Di Monte, D. A., & Federoff, H. J. (2002). Behavioral and neurochemical effects of wild-type and mutated human alpha-synuclein in transgenic mice. Experimental Neurology, 175, 35–48.

    CAS  PubMed  Google Scholar 

  • Rockenstein, E., Mallory, M., Hashimoto, M., Song, D., Shults, C. W., Lang, I., & Masliah, E. (2002). Differential neuropathological alterations in transgenic mice expressing alpha-synuclein from the platelet-derived growth factor and Thy-1 promoters. Journal of Neuroscience Research, 68, 568–578.

    CAS  PubMed  Google Scholar 

  • Sanchez-Guajardo, V., Febbraro, F., Kirik, D., & Romero-Ramos, M. (2010). Microglia acquire distinct activation profiles depending on the degree of alpha-synuclein neuropathology in a rAAV based model of Parkinson’s disease. PLoS One, 5, e8784.

    PubMed Central  PubMed  Google Scholar 

  • Sato, H., Arawaka, S., Hara, S., Fukushima, S., Koga, K., Koyama, S., & Kato, T. (2011). Authentically phosphorylated alpha-synuclein at Ser129 accelerates neurodegeneration in a rat model of familial Parkinson’s disease. The Journal of Neuroscience, 31, 16884–16894.

    CAS  PubMed  Google Scholar 

  • Schell, H., Hasegawa, T., Neumann, M., & Kahle, P. J. (2009). Nuclear and neuritic distribution of serine-129 phosphorylated alpha-synuclein in transgenic mice. Neuroscience, 160, 796–804.

    CAS  PubMed  Google Scholar 

  • Sharon, R., Goldberg, M. S., Bar-Josef, I., Betensky, R. A., Shen, J., & Selkoe, D. J. (2001). Alpha-synuclein occurs in lipid-rich high molecular weight complexes, binds fatty acids, and shows homology to the fatty acid-binding proteins. Proceedings of the National Academy of Sciences of the United States of America, 98, 9110–9115.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sharon, R., Bar-Joseph, I., Frosch, M. P., Walsh, D. M., Hamilton, J. A., & Selkoe, D. J. (2003). The formation of highly soluble oligomers of alpha-synuclein is regulated by fatty acids and enhanced in Parkinson’s disease. Neuron, 37, 583–595.

    CAS  PubMed  Google Scholar 

  • Shi, M., Bradner, J., Hancock, A. M., Chung, K. A., Quinn, J. F., Peskind, E. R., Galasko, D., Jankovic, J., Zabetian, C. P., Kim, H. M., Leverenz, J. B., Montine, T. J., Ginghina, C., Kang, U. J., Cain, K. C., Wang, Y., Aasly, J., Goldstein, D., & Zhang, J. (2011). Cerebrospinal fluid biomarkers for Parkinson disease diagnosis and progression. Annals of Neurology, 69, 570–580.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Simon-Sanchez, J., Schulte, C., Bras, J. M., Sharma, M., Gibbs, J. R., Berg, D., Paisan-Ruiz, C., Lichtner, P., Scholz, S. W., Hernandez, D. G., Kruger, R., Federoff, M., Klein, C., Goate, A., Perlmutter, J., Bonin, M., Nalls, M. A., Illig, T., Gieger, C., Houlden, H., Steffens, M., Okun, M. S., Racette, B. A., Cookson, M. R., Foote, K. D., Fernandez, H. H., Traynor, B. J., Schreiber, S., Arepalli, S., Zonozi, R., Gwinn, K., van der Brug, M., Lopez, G., Chanock, S. J., Schatzkin, A., Park, Y., Hollenbeck, A., Gao, J., Huang, X., Wood, N. W., Lorenz, D., Deuschl, G., Chen, H., Riess, O., Hardy, J. A., Singleton, A. B., & Gasser, T. (2009). Genome-wide association study reveals genetic risk underlying Parkinson’s disease. Nature Genetics, 41, 1308–1312.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Singleton, A. B., Farrer, M., Johnson, J., Singleton, A., Hague, S., Kachergus, J., Hulihan, M., Peuralinna, T., Dutra, A., Nussbaum, R., Lincoln, S., Crawley, A., Hanson, M., Maraganore, D., Adler, C., Cookson, M. R., Muenter, M., Baptista, M., Miller, D., Blancato, J., Hardy, J., & Gwinn-Hardy, K. (2003). Alpha-synuclein locus triplication causes Parkinson’s disease. Science, 302, 841.

    CAS  PubMed  Google Scholar 

  • Smith, W. W., Jiang, H., Pei, Z., Tanaka, Y., Morita, H., Sawa, A., Dawson, V. L., Dawson, T. M., & Ross, C. A. (2005a). Endoplasmic reticulum stress and mitochondrial cell death pathways mediate A53T mutant alpha-synuclein-induced toxicity. Human Molecular Genetics, 14, 3801–3811.

    CAS  PubMed  Google Scholar 

  • Smith, W. W., Margolis, R. L., Li, X., Troncoso, J. C., Lee, M. K., Dawson, V. L., Dawson, T. M., Iwatsubo, T., & Ross, C. A. (2005b). Alpha-synuclein phosphorylation enhances eosinophilic cytoplasmic inclusion formation in SH-SY5Y cells. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 25, 5544–5552.

    CAS  Google Scholar 

  • Snyder, H., Mensah, K., Theisler, C., Lee, J. M., Matouschek, A., & Wolozin, B. (2003). Aggregated and monomeric alpha-synuclein bind to the S6’ proteasomal protein and inhibit proteasomal function. The Journal of Biological Chemistry, 278(14), 11753–11759.

    CAS  PubMed  Google Scholar 

  • Song, Y. J., Halliday, G. M., Holton, J. L., Lashley, T., O’Sullivan, S. S., McCann, H., Lees, A. J., Ozawa, T., Williams, D. R., Lockhart, P. J., & Revesz, T. R. (2009). Degeneration in different parkinsonian syndromes relates to astrocyte type and astrocyte protein expression. Journal of Neuropathology and Experimental Neurology, 68, 1073–1083.

    CAS  PubMed  Google Scholar 

  • Spillantini, M. G., & Goedert, M. (2000). The alpha-synucleinopathies: Parkinson’s disease, dementia with Lewy bodies, and multiple system atrophy. Annals of the New York Academy of Sciences, 920, 16–27.

    CAS  PubMed  Google Scholar 

  • Su, X., Federoff, H. J., & Maguire-Zeiss, K. A. (2009). Mutant alpha-synuclein overexpression mediates early proinflammatory activity. Neurotoxicity Research, 16(3), 238–254.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Su, X., Maguire-Zeiss, K. A., Giuliano, R., Prifti, L., Venkatesh, K., & Federoff, H. J. (2008). Synuclein activates microglia in a model of Parkinson’s disease. Neurobiology of Aging, 29, 1690–1701.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Su, L. J., Auluck, P. K., Outeiro, T. F., Yeger-Lotem, E., Kritzer, J. A., Tardiff, D. F., Strathearn, K. E., Liu, F., Cao, S., Hamamichi, S., Hill, K. J., Caldwell, K. A., Bell, G. W., Fraenkel, E., Cooper, A. A., Caldwell, G. A., McCaffery, J. M., Rochet, J. C., & Lindquist, S. (2010). Compounds from an unbiased chemical screen reverse both ER-to-Golgi trafficking defects and mitochondrial dysfunction in Parkinson’s disease models. Disease Models & Mechanisms, 3, 194–208.

    CAS  Google Scholar 

  • Sugeno, N., Takeda, A., Hasegawa, T., Kobayashi, M., Kikuchi, A., Mori, F., Wakabayashi, K., & Itoyama, Y. (2008). Serine 129 phosphorylation of alpha-synuclein induces unfolded protein response-mediated cell death. The Journal of Biological Chemistry, 283, 23179–23188.

    CAS  PubMed  Google Scholar 

  • Tanaka, Y., Engelender, S., Igarashi, S., Rao, R. K., Wanner, T., Tanzi, R., Sawa, A. L., Dawson, V., Dawson, T. M., & Ross, C. A. (2001). Inducible expression of mutant alpha-synuclein decreases proteasome activity and increases sensitivity to mitochondria-dependent apoptosis. Human Molecular Genetics, 10, 919–992.

    CAS  PubMed  Google Scholar 

  • Tehranian, R., Montoya, S. E., Van Laar, A. D., Hastings, T. G., & Perez, R. G. (2006). Alpha-synuclein inhibits aromatic amino acid decarboxylase activity in dopaminergic cells. Journal of Neurochemistry, 99, 1188–1196.

    CAS  PubMed  Google Scholar 

  • Tetzlaff, J. E., Putcha, P., Outeiro, T. F., Ivanov, A., Berezovska, O., Hyman, B. T., & McLean, P. J. (2008). CHIP targets toxic alpha-synuclein oligomers for degradation. The Journal of Biological Chemistry, 283, 17962–17968.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Theodore, S., Cao, S., McLean, P. J., & Standaert, D. G. (2008). Targeted overexpression of human alpha-synuclein triggers microglial activation and an adaptive immune response in a mouse model of Parkinson disease. Journal of Neuropathology and Experimental Neurology, 67, 1149–1158.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tofaris, G. K., Garcia Reitbock, P., Humby, T., Lambourne, S. L., O’Connell, M., Ghetti, B., Gossage, H., Emson, P. C., Wilkinson, L. S., Goedert, M., & Spillantini, M. G. (2006). Pathological changes in dopaminergic nerve cells of the substantia nigra and olfactory bulb in mice transgenic for truncated human alpha-synuclein(1–120): Implications for Lewy body disorders. The Journal of Neuroscience, 26, 3942–3950.

    CAS  PubMed  Google Scholar 

  • Tokuda, T., Qureshi, M. M., Ardah, M. T., Varghese, S., Shehab, S. A., Kasai, T., Ishigami, N., Tamaoka, A., Nakagawa, M., & El-Agnaf, O. M. (2010). Detection of elevated levels of alpha-synuclein oligomers in CSF from patients with Parkinson disease. Neurology, 75, 1766–1772.

    CAS  PubMed  Google Scholar 

  • Tomas-Zapico, C., Diez-Zaera, M., Ferrer, I., Gomez-Ramos, P., Moran, M. A., Miras-Portugal, M. T., Diaz-Hernandez, M., & Lucas, J. J. (2011). Alpha-synuclein accumulates in huntingtin inclusions but forms independent filaments and its deficiency attenuates early phenotype in a mouse model of Huntington’s disease. Human Molecular Genetics, 21(3), 495–510.

    PubMed  Google Scholar 

  • Tsika, E., Moysidou, M., Guo, J., Cushman, M., Gannon, P., Sandaltzopoulos, R., Giasson, B. I., Krainc, D., Ischiropoulos, H., & Mazzulli, J. R. (2010). Distinct region-specific alpha-synuclein oligomers in A53T transgenic mice: Implications for neurodegeneration. Journal of Neuroscience, 30, 3409–3418.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ubhi, K., Low, P., & Masliah, E. (2011). Multiple system atrophy: A clinical and neuropathological perspective. Trends in Neurosciences, 34, 581–590.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ueda, K., Fukushima, H., Masliah, E., Xia, Y., Iwai, A., Yoshimoto, M., Otero, D. A., Kondo, J., Ihara, Y., & Saitoh, T. (1993). Molecular cloning of cDNA encoding an unrecognized component of amyloid in Alzheimer disease. Proceedings of the National Academy of Sciences of the United States of America, 90, 11282–11286.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ulusoy, A., Febbraro, F., Jensen, P. H., Kirik, D., & Romero-Ramos, M. (2010). Co-expression of C-terminal truncated alpha-synuclein enhances full-length alpha-synuclein-induced pathology. The European Journal of Neuroscience, 32, 409–422.

    PubMed  Google Scholar 

  • van der Putten, H., Wiederhold, K. H., Probst, A., Barbieri, S., Mistl, C., Danner, S., Kauffmann, S., Hofele, K., Spooren, W. P., Ruegg, M. A., Lin, S., Caroni, P., Sommer, B., Tolnay, M., & Bilbe, G. (2000). Neuropathology in mice expressing human alpha-synuclein. The Journal of Neuroscience, 20, 6021–6029.

    PubMed  Google Scholar 

  • Ved, R., Saha, S., Westlund, B., Perier, C., Burnam, L., Sluder, A., Hoener, M., Rodrigues, C. M., Alfonso, A., Steer, C., Liu, L., Przedborski, S., & Wolozin, B. (2005). Similar patterns of mitochondrial vulnerability and rescue induced by genetic modification of alpha-synuclein, parkin, and DJ-1 in Caenorhabditis elegans. The Journal of Biological Chemistry, 280, 42655–42668.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vitner, E. B., Platt, F. M., & Futerman, A. H. (2010). Common and uncommon pathogenic cascades in lysosomal storage diseases. The Journal of Biological Chemistry, 285, 20423–20427.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vogiatzi, T., Xilouri, M., Vekrellis, K., & Stefanis, L. (2008). Wild type alpha-synuclein is degraded by chaperone-mediated autophagy and macroautophagy in neuronal cells. The Journal of Biological Chemistry, 283, 23542–23556.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Volpicelli-Daley, L. A., Luk, K. C., Patel, T. P., Tanik, S. A., Riddle, D. M., Stieber, A., Meaney, D. F., Trojanowski, J. Q., & Lee, V. M. (2011). Exogenous alpha-synuclein fibrils induce Lewy body pathology leading to synaptic dysfunction and neuron death. Neuron, 72, 57–71.

    CAS  PubMed Central  PubMed  Google Scholar 

  • von Coelln, R., Thomas, B., Andrabi, S. A., Lim, K. L., Savitt, J. M., Saffary, R., Stirling, W., Bruno, K., Hess, E. J., Lee, M. K., Dawson, V. L., & Dawson, T. M. (2006). Inclusion body formation and neurodegeneration are parkin independent in a mouse model of alpha-synucleinopathy. The Journal of Neuroscience, 26, 3685–3696.

    Google Scholar 

  • Wakamatsu, M., Ishii, A., Ukai, Y., Sakagami, J., Iwata, S., Ono, M., Matsumoto, K., Nakamura, A., Tada, N., Kobayashi, K., Iwatsubo, T., & Yoshimoto, M. (2007). Accumulation of phosphorylated alpha-synuclein in dopaminergic neurons of transgenic mice that express human alpha-synuclein. Journal of Neuroscience Research, 85, 1819–1825.

    CAS  PubMed  Google Scholar 

  • Wakamatsu, M., Ishii, A., Iwata, S., Sakagami, J., Ukai, Y., Ono, M., Kanbe, D., Muramatsu, S., Kobayashi, K., Iwatsubo, T., & Yoshimoto, M. (2008). Selective loss of nigral dopamine neurons induced by overexpression of truncated human alpha-synuclein in mice. Neurobiology of Aging, 29, 574–585.

    CAS  PubMed  Google Scholar 

  • Wang, L., Fleming, S. M., Chesselet, M. F., & Tache, Y. (2008). Abnormal colonic motility in mice overexpressing human wild-type alpha-synuclein. NeuroReport, 19, 873–876.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang, W., Perovic, I., Chittuluru, J., Kaganovich, A., Nguyen, L. T., Liao, J., Auclair, J. R., Johnson, D., Landeru, A., Simorellis, A. K., Ju, S., Cookson, M. R., Asturias, F. J., Agar, J. N., Webb, B. N., Kang, C., Ringe, D., Petsko, G. A., Pochapsky, T. C., & Hoang, Q. Q. (2011). A soluble alpha-synuclein construct forms a dynamic tetramer. Proceedings of the National Academy of Sciences of the United States of America, 108, 17797–17802.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Weinreb, P., Zhen, W., Poon, A., Conway, K., & Lansbury, P. J. (1996). NACP, a protein implicated in Alzheimer’s disease and learning, is natively unfolded. Biochemistry, 35, 13709–13715.

    CAS  PubMed  Google Scholar 

  • Weintraub, D., Doshi, J., Koka, D., Davatzikos, C., Siderowf, A. D., Duda, J. E., Wolk, D. A., Moberg, P. J., Xie, S. X., & Clark, C. M. (2011). Neurodegeneration across stages of cognitive decline in Parkinson disease. Archives of Neurology, 68, 1562–1568.

    PubMed Central  PubMed  Google Scholar 

  • Wersinger, C., & Sidhu, A. (2003). Attenuation of dopamine transporter activity by alpha-synuclein. Neuroscience Letters, 340, 189–192.

    CAS  PubMed  Google Scholar 

  • Wood, S. J., Wypych, J., Steavenson, S., Louis, J. C., Citron, M., & Biere, A. L. (1999). Alpha-synuclein fibrillogenesis is nucleation dependent. Implications for the pathogenesis of Parkinson’s disease. The Journal of Biological Chemistry, 274, 19509–19512.

    CAS  PubMed  Google Scholar 

  • Xilouri, M., & Stefanis, L. (2011). Autophagic pathways in Parkinson disease and related disorders. Expert Reviews in Molecular Medicine, 13, e8.

    PubMed  Google Scholar 

  • Xu, J., Kao, S. Y., Lee, F. J., Song, W., Jin, L. W., & Yankner, B. A. (2002). Dopamine-dependent neurotoxicity of alpha-synuclein: A mechanism for selective neurodegeneration in Parkinson disease. Nature Medicine, 8, 600–606.

    CAS  PubMed  Google Scholar 

  • Yamada, M., Iwatsubo, T., Mizuno, Y., & Mochizuki, H. (2004). Overexpression of alpha-synuclein in rat substantia nigra results in loss of dopaminergic neurons, phosphorylation of alpha-synuclein and activation of caspase-9: Resemblance to pathogenetic changes in Parkinson’s disease. Journal of Neurochemistry, 91, 451–461.

    CAS  PubMed  Google Scholar 

  • Yasuda, T., Miyachi, S., Kitagawa, R., Wada, K., Nihira, T., Ren, Y. R., Hirai, Y., Ageyama, N., Terao, K., Shimada, T., Takada, M., Mizuno, Y., & Mochizuki, H. (2007). Neuronal specificity of alpha-synuclein toxicity and effect of Parkin co-expression in primates. Neuroscience, 144, 743–753.

    CAS  PubMed  Google Scholar 

  • Yavich, L., Jakala, P., & Tanila, H. (2006). Abnormal compartmentalization of norepinephrine in mouse dentate gyrus in alpha-synuclein knockout and A30P transgenic mice. Journal of Neurochemistry, 99, 724–732.

    CAS  PubMed  Google Scholar 

  • Yavich, L., Oksman, M., Tanila, H., Kerokoski, P., Hiltunen, M., van Groen, T., Puolivali, J., Mannisto, P. T., Garcia-Horsman, A., MacDonald, E., Beyreuther, K., Hartmann, T., & Jakala, P. (2005). Locomotor activity and evoked dopamine release are reduced in mice overexpressing A30P-mutated human alpha-synuclein. Neurobiology of Disease, 20, 303–313.

    CAS  PubMed  Google Scholar 

  • Yavich, L., Tanila, H., Vepsalainen, S., & Jakala, P. (2004). Role of alpha-synuclein in presynaptic dopamine recruitment. Journal of Neuroscience, 24, 11165–11170.

    CAS  PubMed  Google Scholar 

  • Yu, W. H., Matsuoka, Y., Sziraki, I., Hashim, A., Lafrancois, J., Sershen, H., & Duff, K. E. (2008). Increased dopaminergic neuron sensitivity to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in transgenic mice expressing mutant A53T alpha-synuclein. Neurochemical Research, 33, 902–911.

    CAS  PubMed  Google Scholar 

  • Zaccai, J., Brayne, C., McKeith, I., Matthews, F., & Ince, P. G. (2008). Patterns and stages of alpha-synucleinopathy: Relevance in a population-based cohort. Neurology, 70, 1042–1048.

    CAS  PubMed  Google Scholar 

  • Zarranz, J. J., Alegre, J., Gomez-Esteban, J. C., Lezcano, E., Ros, R., Ampuero, I., Vidal, L., Hoenicka, J., Rodriguez, O., Atares, B., Llorens, V., Gomez Tortosa, E., del Ser, T., Munoz, D. G., & de Yebenes, J. G. (2004). The new mutation, E46K, of alpha-synuclein causes Parkinson and Lewy body dementia. Annals of Neurology, 55, 164–173.

    CAS  PubMed  Google Scholar 

  • Zhou, W., & Freed, C. R. (2005). DJ-1 up-regulates glutathione synthesis during oxidative stress and inhibits A53T alpha-synuclein toxicity. The Journal of Biological Chemistry, 280, 43150–43158.

    CAS  PubMed  Google Scholar 

  • Zhou, W., Milder, J. B., & Freed, C. R. (2008). Transgenic mice overexpressing tyrosine-to-cysteine mutant human alpha-synuclein: A progressive neurodegenerative model of diffuse Lewy body disease. The Journal of Biological Chemistry, 283, 9863–9870.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christine Lund Kragh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Kragh, C.L., Romero-Ramos, M., Halliday, G., Jensen, P.H. (2014). Alpha Synuclein in Parkinson’s Disease. In: Kostrzewa, R. (eds) Handbook of Neurotoxicity. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5836-4_14

Download citation

Publish with us

Policies and ethics