Skip to main content

Glutamate Neurotoxicity, Transport and Alternate Splicing of Transporters

  • Reference work entry
  • First Online:
Handbook of Neurotoxicity

Abstract

Glutamate is the major excitatory neurotransmitter in the central nervous system and its levels in the synaptic cleft are tightly controlled by high affinity glutamate transporters (also known as Excitatory Amino Acid Transporters or EAATs). The EAAT family is comprised of five members (EAAT1-5), and these transporters are subject to alternative splicing. Alternative splicing of the EAAT genes is a fundamental mechanism that can give rise to multiple distinct mRNA transcripts, producing protein isoforms with potentially altered functions. Numerous splice variants of EAATs have been identified in humans, rodents, and other mammalian species. All splice variants of EAATs cloned to date are either exon-skipping and/or intron-retaining types. These modifications may impact upon protein structure, posttranslational modification, function, cellular localization, and trafficking. Message and protein for these splice variants are detectable in the normal brain and, in many instances, have been shown to be induced by pathophysiological insults such as hypoxia. In addition, aberrant expression of EAAT splice variants has been reported in neurodegenerative conditions such as amyotrophic lateral sclerosis, Alzheimer’s disease, ischemic stroke, and age-related macular degeneration. These EAAT variants may represent therapeutic targets and thus require an improved understanding of their regulation. This chapter describes recent developments in investigating the molecular heterogeneity, localization, function, structure, and regulation of the EAATs and their splice variants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 549.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AD:

Alzheimer’s disease

ALS:

Amyotrophic lateral sclerosis

AMD:

Age-related macular degeneration

CNS:

Central nervous system

EAAC1:

Excitatory amino acid carrier 1

EAAT:

Excitatory amino acid transporter

GABA:

Gamma-aminobutyric acid

GLAST:

Glutamate aspartate transporter

GLT-1:

Glutamate transporter-1

GTRAP:

Glutamate transporter associated protein

hnRNP:

heterogeneous nuclear ribonucleoproteins

HSP70:

70 kDa heat shock proteins

MAP2:

Microtubule-associated protein 2

MLO-Y4:

Murine long bone osteocyte Y4

mRNA:

messenger ribonucleic acid

PDZ:

Postsynaptic density (PSD), Drosophila disc large tumor suppressor (Dlg1), and zonula occludens-1 protein (ZO-1)

SLC:

Solute carrier

SOD:

Superoxide dismutase

SR protein:

Serine/arginine-rich protein

SRPK:

Serine/arginine-rich protein kinase

UTR:

Untranslated region

References

  • Allemand, E., Guil, S., Myers, M., Moscat, J., Ca’ ceres, J. F., & Krainer, A. R. (2005). Regulation of heterogenous nuclear ribonucleoprotein A1 transport by phosphorylation in cells stressed by osmotic shock. Proceedings of the National Academy of Sciences of the United States of America, 102(10), 3605–3610.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Arriza, J. L., Eliasof, S., Kavanaugh, M. P., & Amara, S. G. (1997). Excitatory amino acid transporter 5, a retinal glutamate transporter coupled to a chloride conductance. Proceedings of the National Academy of Sciences of the United States of America, 94, 4155–4160.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bassan, M., Liu, H., Madsen, K. L., Armsen, W., Zhou, J., Desilva, T., Chen, W., Paradise, A., Brasch, M. A., Staudinger, J., Gether, U., Irwin, N., & Rosenberg, P. A. (2008). Interaction between the glutamate transporter GLT1b and the synaptic PDZ domain protein PICK1. The European Journal of Neuroscience, 27(1), 66–82.

    PubMed  Google Scholar 

  • Bauer, D., Gupta, D., Harotunian, V., Meador-Woodruff, J. H., & McCullumsmith, R. E. (2008). Abnormal expression of glutamate transporter and transporter interacting molecules in prefrontal cortex in elderly patients with schizophrenia. Schizophrenia Research, 104(1–3), 108–120.

    Article  PubMed Central  PubMed  Google Scholar 

  • Beart, P. M., & O’Shea, R. D. (2007). Transporters for l-glutamate: An update on their molecular pharmacology and pathological involvement. British Journal of Pharmacology, 150, 5–17.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Billups, B., & Attwell, D. (1996). Modulation of non-vesicular glutamate release by pH. Nature, 379(6561), 171–174.

    Article  CAS  PubMed  Google Scholar 

  • Black, D. L. (2003). Mechanism of alternative pre-mRNA splicing. Annual Review of Biochemistry, 72, 291–336.

    Article  CAS  PubMed  Google Scholar 

  • Bristol, L. A., & Rothstein, J. D. (1996). Glutamate transporter gene expression in amyotrophic lateral sclerosis motor cortex. Annals of Neurology, 39(5), 676–679.

    Article  CAS  PubMed  Google Scholar 

  • Chen, C., & Manley, J. L. (2009). Mechanisms of alternative splicing regulation: Insights from molecular and genomics approaches. Nature Reviews, 10, 741–754.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chen, W., Aoki, C., Mahadomrongkul, V., Gruber, C. E., Wang, G. J., Blitzblau, R., Irwin, N., & Rosenberg, P. A. (2002). Expression of a variant form of the glutamate transporter GLT1 in neuronal cultures and in neurons and astrocytes in the rat brain. The Journal of Neuroscience, 22(6), 2142–2152.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cowburn, R., Hardy, J., Roberts, P., & Briggs, R. (1988). Presynaptic and postsynaptic glutamatergic function in Alzheimer’s disease. Neuroscience Letters, 86(1), 109–113.

    Article  CAS  PubMed  Google Scholar 

  • D’Amico, A., Soragna, A., Di Cairano, E., Panzeri, N., Anzai, N., Vellea Sacchi, F., & Perego, C. (2010). The surface density of the glutamate transporter EAAC1 is controlled by interactions with PDZK1 and AP2 adaptor complexes. Traffic, 11(11), 1455–1470.

    Article  PubMed  Google Scholar 

  • Danbolt, N. C. (2001). Glutamate uptake. Progress in Neurobiology, 65, 1–105.

    Article  CAS  PubMed  Google Scholar 

  • Daoud, R., Mies, G., Smialowska, A., Oláh, L., Hossmann, K. A., & Stamm, S. (2002). Ischemia induces a translocation of the splicing factor tra2-beta 1 and changes alternative splicing patterns in the brain. The Journal of Neuroscience, 22(14), 5889–5899.

    CAS  PubMed  Google Scholar 

  • Fray, A. E., Ince, P. G., Banner, S. J., Milton, I. D., Usher, P. A., Cookson, M. R., & Shaw, P. J. (1998). The expression of the glial glutamate transporter protein EAAT2 in motor neuron disease: An immunohistochemical study. The European Journal of Neuroscience, 10(8), 2481–2489.

    Article  CAS  PubMed  Google Scholar 

  • González-González, I. M., GarcĂ­a-TardĂłn, N., Cubelos, B., GimĂ©nez, C., & Zafra, F. (2008). The glutamate transporter GLT1b interacts with the scaffold protein PSD-95. Journal of Neurochemistry, 105(5), 1834–1848.

    Article  PubMed  Google Scholar 

  • Guo, H., Lai, L., Butchbach, M. E., Stockinger, M. P., Shan, X., Bishop, G. A., & Lin, C. L. (2003). Increased expression of the glial glutamate transporter EAAT2 modulates excitotoxicity and delays the onset but not the outcome of ALS in mice. Human Molecular Genetics, 12(19), 2519–2532.

    Article  CAS  PubMed  Google Scholar 

  • Hanley, J. G., Jones, E. M., & Moss, S. J. (2000). GABA receptor rho1 subunit interacts with a novel splice variant of the glycine transporter, GLYT-1. The Journal of Biological Chemistry, 275(2), 840–846.

    Article  CAS  PubMed  Google Scholar 

  • Harvey, B. H., Airavaara, M., Hinzman, J., Wires, E. M., Chiocco, M. J., Howard, D. B., Shen, H., Gerhardt, G., Hoffer, B. J., & Wang, Y. (2011). Targeted over-expression of glutamate transporter 1 (GLT-1) reduces ischemic brain injury in a rat model of stroke. PloS ONE, 6(8), e22135–e22135.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hu, W. H., Walters, W. M., Xia, X. M., Karmally, S. A., & Bethea, J. R. (2003). Neuronal glutamate transporter EAAT4 is expressed in astrocytes. Glia, 44(1), 13–25.

    Article  PubMed  Google Scholar 

  • Huggett, J., Vaughan-Thomas, A., & Mason, D. (2000). The open reading frame of the Na(+)-dependent glutamate transporter GLAST-1 is expressed in bone and a splice variant of this molecule is expressed in bone and brain. FEBS Letters, 485(1), 13–18.

    Article  CAS  PubMed  Google Scholar 

  • Huggett, J. F., Mustafa, A., O’Neal, L., & Mason, D. J. (2002). The glutamate transporter GLAST-1 (EAAT-1) is expressed in the plasma membrane of osteocytes and is responsive to extracellular glutamate concentration. Biochemical Society Transactions, 30(Pt 6), 890–893.

    CAS  PubMed  Google Scholar 

  • Ivarsson, Y. (2012). Plasticity of PDZ domains in ligand recognition and signaling. FEBS Letters, 586(17), 2638–2647.

    Article  CAS  PubMed  Google Scholar 

  • Jackson, M., Song, W., Liu, M. Y., Jin, L., Dykes-Hoberg, M., Lin, C. I., Bowers, W. J., Federoff, H. J., Sternweis, P. C., & Rothstein, J. D. (2001). Modulation of the neuronal glutamate transporter EAAT4 by two interacting proteins. Nature, 410(6824), 89–93.

    Article  CAS  PubMed  Google Scholar 

  • Kim, S., Chao, W., Choi, S., & Volsky, D. J. (2003). Cloning and characterization of the 3′-untranslated region of the human excitatory amino acid transporter 2 transcript. Journal of Neurochemistry, 86, 1458–1467.

    Article  CAS  PubMed  Google Scholar 

  • Kirschner, M. A., Copeland, N. G., Gilbert, D. J., Jenkins, N. A., & Amara, S. G. (1994). Mouse excitatory amino acid transporter EAAT2: Isolation, characterization, and proximity to neuroexcitability loci on mouse chromosome 2. Genomics, 24, 218–224.

    Article  CAS  PubMed  Google Scholar 

  • Lauriat, T. L., & McInnes, L. A. (2007). EAAT2 regulation and splicing: Relevance to psychiatric and neurological disorders. Molecular Psychiatry, 12(12), 1065–1078.

    Article  CAS  PubMed  Google Scholar 

  • Lazaridis, K. N., Tietz, P., Wu, T., Kip, S., Dawson, P. A., & LaRusso, N. F. (2000). Alternative splicing of the rat sodium/bile acid transporter changes its cellular localization and transport properties. Proceedings of the National Academy of Sciences of the United States of America, 97(20), 11092–11097.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lee, A., & Pow, D. V. (2010). Astrocytes: Glutamate transport and alternate splicing of transporters. The International Journal of Biochemistry & Cell Biology, 42, 1901–1906.

    Article  CAS  Google Scholar 

  • Lee, A., Rayfield, A., Hryciw, D. H., Ma, T. A., Wang, D., Pow, D., Broer, S., Yun, C., & Poronnik, P. (2007). Na+-H+ exchanger regulatory factor 1 is a PDZ scaffold for the astroglial glutamate transporter GLAST. Glia, 55(2), 119–129.

    Article  PubMed Central  PubMed  Google Scholar 

  • Lee, A., Anderson, A. R., Stevens, M. G., & Pow, D. V. (2011). Exon 4-skipping GLT-1: A new form of an abundantly expressed glutamate transporter. Neuroscience Letters, 504(3), 228–231.

    Article  CAS  PubMed  Google Scholar 

  • Lee, A., Anderson, A. R., Barnett, N. L., Stevens, M. G., & Pow, D. V. (2012a). Alternate splicing and expression of the glutamate transporter EAAT5 in the rat retina. Gene, 506(2), 283–288.

    Article  CAS  PubMed  Google Scholar 

  • Lee, A., Anderson, A. R., Beasley, S. J., Barnett, N. L., Poronnik, P., & Pow, D. V. (2012b). A new splice variant of the glutamate-aspartate transporter: Cloning and immunolocalization of GLAST1c in rat, pig and human brains. Journal of Chemical Neuroanatomy, 43(1), 52–63.

    Article  CAS  PubMed  Google Scholar 

  • Lewis, B. P., Burge, C. B., & Bartel, D. P. (2005). Conserved seed pairing, often flanked by adenosine, indicates that thousands of human genes are microRNA targets. Cell, 120, 15–20.

    Article  CAS  PubMed  Google Scholar 

  • Lopez, A. J. (1998). Alternative splicing of pre-mRNA: Developmental consequences and mechanisms of regulation. Annual Review of Genetics, 32, 279–305.

    Article  CAS  PubMed  Google Scholar 

  • Lynch, K. W. (2007). Regulation of alternative splicing by signal transduction pathways. In B. J. Blencowe & B. R. Graveley (Eds.), Alternative splicing in the postgenomic era (pp. 161–174). Austin/New York: Landes Bioscience/Springer Bioscience.

    Chapter  Google Scholar 

  • Macnab, L. T., & Pow, D. V. (2007a). Expression of the exon 9-skipping form of EAAT2 in astrocytes of rats. Neuroscience, 150(3), 705–711.

    Article  CAS  PubMed  Google Scholar 

  • Macnab, L. T., & Pow, D. V. (2007b). Central nervous system expression of the exon 9 skipping form of the glutamate transporter GLAST. Neuroreport, 18(8), 741–745.

    Article  CAS  PubMed  Google Scholar 

  • Macnab, L. T., Williams, S. M., & Pow, D. V. (2006). Expression of the exon 3 skipping form of GLAST, GLAST1a, in brain and retina. Neuroreport, 17(18), 1867–1870.

    Article  CAS  PubMed  Google Scholar 

  • Maragakis, N. J., Dykes-Hoberg, M., & Rothstein, J. D. (2004). Altered expression of the glutamate transporter EAAT2b in neurological disease. Annals of Neurology, 55(4), 469–477.

    Article  CAS  PubMed  Google Scholar 

  • Matlin, A. R., Clark, F., & Smith, C. W. J. (2005). Understanding alternative splicing: Towards a cellular code. Nature Reviews, 6, 386–298.

    Article  CAS  PubMed  Google Scholar 

  • McCarthy, D. J., Alexander, R., Smith, M. A., Pathak, S., Kanes, S., Lee, C. M., & Sanacora, G. (2012). Glutamate-based depression GBD. Medical Hypotheses, 78(5), 675–681.

    Article  CAS  PubMed  Google Scholar 

  • Melone, M., Vitellaro-Zuccarello, L., Vallejo-Illarramendi, A., PĂ©rez-Samartin, A., Matute, C., Cozzi, A., Pellegrini-Giampietro, D. E., Rothstein, J. D., & Conti, F. (2001). The expression of glutamate transporter GLT-1 in the rat cerebral cortex is down-regulated by the antipsychotic drug clozapine. Molecular Psychiatry, 6(4), 380–386.

    Article  CAS  PubMed  Google Scholar 

  • Meyer, T., MĂĽnch, C., Knappenberger, B., Liebau, S., Völkel, H., & Ludolph, A. C. (1998). Alternative splicing of the glutamate transporter EAAT2 (GLT-1). Neuroscience Letters, 241(1), 68–70.

    Article  CAS  PubMed  Google Scholar 

  • Meyer, T., Fromm, A., MĂĽnch, C., Schwalenstöcker, B., Fray, A. E., Ince, P. G., Stamm, S., Grön, G., Ludolph, A. C., & Shaw, P. J. (1999). The RNA of the glutamate transporter EAAT2 is variably spliced in amyotrophic lateral sclerosis and normal individuals. Journal of the Neurological Sciences, 170(1), 45–50.

    Article  CAS  PubMed  Google Scholar 

  • Moghaddam, B., & Javitt, D. (2011). From revolution to evolution: The glutamate hypothesis of schizophrenia and its implication for treatment. Neuropsychopharmacology, 37(1), 4–15.

    Article  PubMed Central  PubMed  Google Scholar 

  • Munch, C., Schwalenstocker, B., Hermann, C., Cirovic, S., Stamm, S., Ludolph, A. C., & Meyer, T. (2000). Differential RNA cleavage and polyadenylation of the glutamate transporter EAAT2 in the human brain. Molecular Brain Research, 80, 244–251.

    Article  CAS  PubMed  Google Scholar 

  • MĂĽnch, C., Ebstein, M., Seefried, U., Zhu, B., Stamm, S., Landwehrmeyer, G. B., Ludolph, A. C., Schwalenstöcker, B., & Meyer, T. (2002). Alternative splicing of the 5′-sequences of the mouse EAAT2 glutamate transporter and expression in a transgenic model for amyotrophic lateral sclerosis. Journal of Neurochemistry, 82(3), 594–603.

    Article  PubMed  Google Scholar 

  • Ohnuma, T., Augood, S. J., Arai, H., McKenna, P. J., & Emson, P. C. (1998). Expression of the human excitatory amino acid transporter 2 and metabotropic glutamate receptors 3 and 5 in the prefrontal cortex from normal individuals and patients with schizophrenia. Brain Research. Molecular Brain Research, 56(1–2), 207–217.

    Article  CAS  PubMed  Google Scholar 

  • Ohnuma, T., Tessler, S., Arai, H., Faull, R. L., McKenna, P. J., & Emson, P. C. (2000). Gene expression of metabotropic glutamate receptor 5 and excitatory amino acid transporter 2 in the schizophrenic hippocampus. Brain Research. Molecular Brain Research, 85(1–2), 24–31.

    Article  CAS  PubMed  Google Scholar 

  • Peacey, E., Miller, C. C., Dunlop, J., & Rattray, M. (2009). The four major N- and C-terminal splice variants of the excitatory amino acid transporter GLT-1 form cell surface homomeric and heteromeric assemblies. Molecular Pharmacology, 75(5), 1062–1073.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pines, G., Danbolt, N. C., BjørĂĄs, M., Zhang, Y., Bendahan, A., Eide, L., Koepsell, H., Storm-Mathisen, J., Seeberg, E., & Kanner, B. I. (1992). Cloning and expression of a rat brain l-glutamate transporter. Nature, 360(6403), 464–467. Erratum in: Nature (1992); 360(6406), 768.

    Article  CAS  PubMed  Google Scholar 

  • Ponce, J., Poyatos, I., AragĂłn, C., GimĂ©nez, C., & Zafra, F. (1998). Characterization of the 5′ region of the rat brain glycine transporter GLYT2 gene: Identification of a novel isoform. Neuroscience Letters, 242(1), 25–28.

    Article  CAS  PubMed  Google Scholar 

  • Pow, D. V., & Cook, D. G. (2009). Neuronal expression of splice variants of “glial” glutamate transporters in brains afflicted by Alzheimer’s disease: Unmasking an intrinsic neuronal property. Neurochemical Research, 34(10), 1748–1757.

    Article  CAS  PubMed  Google Scholar 

  • Pow, D. V., Barnett, N. L., & Penfold, P. (2000). Are neuronal transporters relevant in retinal glutamate homeostasis? Neurochemistry International, 37(2–3), 191–198.

    Article  CAS  PubMed  Google Scholar 

  • Pow, D. V., Naidoo, T., Lingwood, B. E., Healy, G. N., Williams, S. M., Sullivan, R. K., O’Driscoll, S., & Colditz, P. B. (2004). Loss of glial glutamate transporters and induction of neuronal expression of GLT-1B in the hypoxic neonatal pig brain. Brain Research. Developmental Brain Research, 153(1), 1–11.

    Article  CAS  PubMed  Google Scholar 

  • Pow, D. V., Sullivan, R. K., Williams, S. M., & WoldeMussie, E. (2005). Metabolic functions of Muller cells in the AMD retina. In P. L. Penfold & J. M. Provis (Eds.), Macular degeneration (pp. 141–144). Berlin/Heidelberg: Springer.

    Google Scholar 

  • Rao, V. L., Bowen, K. K., & Dempsey, R. J. (2001a). Transient focal cerebral ischemia down-regulates glutamate tramsporters GLT-1 and EAAC1 expression in rat brain. Neurochemical Research, 26, 497–502.

    Article  CAS  PubMed  Google Scholar 

  • Rao, V. L., Dogen, A., Bowen, K. K., Todd, K. G., & Dempsey, R. J. (2001b). Antisense knockdown of the glial glutamate transporter GLT-1 exacerbates hippocampal neuronal damage following traumatic injury to rat brain. The European Journal of Neuroscience, 13, 119–128.

    Article  CAS  PubMed  Google Scholar 

  • Rauen, T., Wiessner, M., Sullivan, R., Lee, A., & Pow, D. V. (2004). A new GLT1 splice variant: Cloning and immunolocalization of GLT1c in the mammalian retina and brain. Neurochemistry International, 45(7), 1095–1106.

    Article  CAS  PubMed  Google Scholar 

  • Romero, G., von Zastrow, M., & Friedman, P. A. (2011). Role of PDZ proteins in regulating trafficking, signaling, and function of GPCRs: Means, motif, and opportunity. Advances in Pharmacology, 62, 279–314.

    Article  CAS  PubMed  Google Scholar 

  • Rossi, D. J., Oshima, T., & Attwell, D. (2000). Glutamate release in severe brain ischaemia is mainly by reversed uptake. Nature, 403(6767), 316–321.

    Article  CAS  PubMed  Google Scholar 

  • Rothstein, J. D., Van Kammen, M., Levey, A. I., Martin, L. J., & Kuncl, R. W. (1995). Selective loss of glial glutamate transporter GLT-1 in amyotrophic lateral sclerosis. Annals of Neurology, 38(1), 73–84.

    Article  CAS  PubMed  Google Scholar 

  • Rozyczka, J., & Engele, J. (2005). Multiple 5′-splice variants of the rat glutamate transporter-1. Brain Research. Molecular Brain Research, 133(1), 157–161.

    Article  CAS  PubMed  Google Scholar 

  • Sakai, K., Hasegawa, C., Okura, M., Morikawa, O., Ueyama, T., Shirai, Y., Sakai, N., & Saito, N. (2003). Novel variants of murine serotonin transporter mRNA and the promoter activity of its upstream site. Neuroscience Letters, 342(3), 175–178.

    Article  CAS  PubMed  Google Scholar 

  • Schallier, A., Smolders, I., Van Dam, D., Loyens, E., De Deyn, P. P., Michotte, A., Michotte, Y., & Massie, A. (2011). Region and age-specific changes in glutamate transport in the AβPP23 mouse model for Alzheimer’s disease. Journal of Alzheimer’s Disease, 4(2), 287–300.

    Google Scholar 

  • Schmitt, A., Asan, E., Lesch, K. P., & Kugler, P. (2002). A splice variant of glutamate transporter GLT1/EAAT2 expressed in neurons: Cloning and localization in rat nervous system. Neuroscience, 109(1), 45–61.

    Article  CAS  PubMed  Google Scholar 

  • Schmitt, A., Zink, M., Petroianu, G., May, B., Braus, D. F., & Henn, F. A. (2003). Decreased gene expression of glial and neuronal glutamate transporters after chronic antipsychotic treatment in rat brain. Neuroscience Letters, 347(2), 81–84.

    Article  CAS  PubMed  Google Scholar 

  • Scott, H. A., Gebhardt, F. M., Mitrovic, A. D., Vandenberg, R. J., & Dodd, P. R. (2011). Glutamate transporter variants reduce glutamate uptake in Alzheimer’s disease. Neurobiology of Aging, 32(3), 553e.1–553e.11.

    Google Scholar 

  • Smith, R. E., Haroutunian, V., Davis, K. L., & Meador-Woodruff, J. H. (2001). Expression of excitatory amino acid transporter transcripts in the thalamus of subjects with schizophrenia. The American Journal of Psychiatry, 158(9), 1393–1399.

    Article  CAS  PubMed  Google Scholar 

  • Sogawa, C., Kumagai, K., Sogawa, N., Morita, K., Dohi, T., & Kitayama, S. (2007). C-terminal region regulates the functional expression of human noradrenaline transporter splice variants. The Biochemical Journal, 401(Pt 1), 185–195.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Stamm, S., Ben-Ari, S., Rafalska, I., Tang, Y., Zhang, Z., Toiber, D., Thanaraj, T. A., & Soreq, H. (2005). Function of alternative splicing. Gene, 344, 1–20.

    Article  CAS  PubMed  Google Scholar 

  • Sullivan, R. K., Woldemussie, E., Macnab, L., Ruiz, G., & Pow, D. V. (2006). Evoked expression of the glutamate transporter GLT-1c in retinal ganglion cells in human glaucoma and in a rat model. Investigative Ophthalmology & Visual Science, 47(9), 3853–3859.

    Article  Google Scholar 

  • Sullivan, S. M., Macnab, L. T., Björkman, S. T., Colditz, P. B., & Pow, D. V. (2007a). GLAST1b, the exon-9 skipping form of the glutamate-aspartate transporter EAAT1 is a sensitive marker of neuronal dysfunction in the hypoxic brain. Neuroscience, 149(2), 434–445.

    Article  CAS  PubMed  Google Scholar 

  • Sullivan, S. M., Lee, A., Björkman, S. T., Miller, S. M., Sullivan, R. K., Poronnik, P., Colditz, P. B., & Pow, D. V. (2007b). Cytoskeletal anchoring of GLAST determines susceptibility to brain damage: An identified role for GFAP. The Journal of Biological Chemistry, 282(40), 29414–29423.

    Article  CAS  PubMed  Google Scholar 

  • Takenaka, M., Bagnasco, S. M., Preston, A. S., Uchida, S., Yamauchi, A., Kwon, H. M., & Handler, J. S. (1995). The canine betaine gamma-amino-n-butyric acid transporter gene: Diverse mRNA isoforms are regulated by hypertonicity and are expressed in a tissue-specific manner. Proceedings of the National Academy of Sciences of the United States of America, 92(4), 1072–1076.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Talkowski, M. E., McCann, K. L., Chen, M., McClain, L., Bamne, M., Wood, J., Chowdari, K. V., Watson, A., Prasad, K. M., Kirov, G., Georgieva, L., Toncheva, D., Mansour, H., Lewis, D. A., Owen, M., O’Donovan, M., Papasaikas, P., Sullivan, P., Ruderfer, D., Yao, J. K., Leonard, S., Thomas, P., Miyajima, F., Quinn, J., Lopez, A. J., & Nimgaonkar, V. L. (2010). Fine-mapping reveals novel alternative splicing of the dopamine transporter. American Journal of Medical Genetics. Part B, Neuropsychiatric Genetics, 153B(8), 1434–1447.

    Article  CAS  Google Scholar 

  • Tian, G., Lai, L., Guo, H., Lin, Y., Butchbach, M. E. R., Chang, Y., & Lin, C. G. (2007). Translational control of glial glutamate transporter EAAT2 expression. The Journal of Biological Chemistry, 282(3), 1727–1737.

    Article  CAS  PubMed  Google Scholar 

  • Utsunomiya-Tate, N., Endou, H., & Kanai, Y. (1997). Tissue specific variants of glutamate transporter GLT-1. FEBS Letters, 416(3), 312–316.

    Article  CAS  PubMed  Google Scholar 

  • Vallejo-Illarramendi, A., Domercq, M., & Matute, C. (2005). A novel alternative splicing form of excitatory amino acid transporter 1 is a negative regulator of glutamate uptake. Journal of Neurochemistry, 95, 341–348.

    Article  CAS  PubMed  Google Scholar 

  • van der Houven van Oordt, W., Diaz-Meco, M. T., Lozano, J., Krainer, A. R., Moscat, J., & Cáceres, J. F. (2000). The MKK(3/6)-p38-signaling cascade alters the subcellular distribution of hnRNP A1 and modulates alternative splicing regulation. The Journal of Cell Biology, 149(2), 307–316.

    Article  PubMed Central  PubMed  Google Scholar 

  • Wang, Z., & Burge, C. B. (2008). Splicing regulation: From a parts list of regulatory elements to an integrated splicing code. RNA, 14(5), 802–813.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wersinger, E., Schwab, Y., Sahel, J. A., Rendon, A., Pow, D. V., Picaud, S., & Roux, M. J. (2006). The glutamate transporter EAAT5 works as a presynaptic receptor in mouse rod bipolar cells. The Journal of Physiology, 577, 221–234.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wilson, J. M., Khabazian, I., Pow, D. V., Craig, U. K., & Shaw, C. A. (2003). Decrease in glial glutamate transporter variants and excitatory amino acid receptor down-regulation in a murine model of ALS-PDC. Neuromolecular Medicine, 3(2), 105–118.

    Article  CAS  PubMed  Google Scholar 

  • Yernool, D., Boudker, O., Jin, Y., & Gouaux, E. (2004). Structure of a glutamate transporter homologue from Pyrococcus horikoshii. Nature, 431(7010), 811–818.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aven Lee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Lee, A., Beasley, S., Pow, D.V. (2014). Glutamate Neurotoxicity, Transport and Alternate Splicing of Transporters. In: Kostrzewa, R. (eds) Handbook of Neurotoxicity. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5836-4_129

Download citation

Publish with us

Policies and ethics