Sustainable Built Environments

2013 Edition
| Editors: Vivian Loftness, Dagmar Haase

Passive Solar Heating in Built Environment

Reference work entry

Definition and Importance of Passive Solar Heating

Passive solar heating is the use of solar energy to heat a building without mechanical or electrical energy. The architecture and construction capture, store, and distribute the sun’s energy. Every building with windows exposed to the sun is passively heated, but heat losses may exceed the solar gains. Accordingly, if the passive heat gain is to reduce heating costs, the system heat losses must be minimized. Ideally, the concept includes mass to store daytime solar heat for nights, increasing the usability of the gains. Finally, the heating system must shut off when solar heating achieves the desired room temperature. Two constraints on passive solar use are glare control and shading during non-heating months.

Maximizing usable passive solar gains is an important design aspect, but often designers focus only on minimizing heat losses. Taking the finance world as an analogy, no one will accumulate wealth through savings alone, income...

This is a preview of subscription content, log in to check access.



The author thanks in particular three institutions in his career, whose support made possible the personal experiences to write this section.

The Swiss Federal Office of Energy, Buildings Program (in particular, Gerhard Schriber).

The International Energy Agency, Solar Heating and Cooling Program and, in particular, all the researchers and architects who, with such dedication, worked together in research tasks over the decades and the founder of the Program, Fred Morse.

The Donau University-Krems, Department of Buildings and Environment (in particular: Peter Holzer, who convinced me to become a professor so people would believe my stories).


  1. 1.
    Feist W (2007) Certification as “Quality Approved Passive House” criteria for residential-use passive houses.
  2. 2.
    Hastings R (ed) (1994) Passive solar commercial and institutional buildings – a sourcebook of examples and design insights. Earthscan, London. ISBN 0-471-93943-9
  3. 3.
  4. 4.
    Simon MJ (1947) Your solar house. Simon and Schuster, New York in cooperation with Libbey-Owens-Ford Glass Co., (Pilkington, North America, Inc.)Google Scholar
  5. 5.
    Butti K, Perlin J (1980) A golden thread: 2500 years of solar architecture and technology. Cheshire Books, Palo Alto. ISBN 0-917352-07-6Google Scholar
  6. 6.
    Franklin Research Center (1979) The first passive solar home awards. US Dept. of Housing and Urban Development, Office of Policy Development and Research, available from US Government Printing Office, Washington, DCGoogle Scholar
  7. 7.
    ASES (1977) 1st National passive solar conference. American Solar Energy Society, Boulder.
  8. 8.
    Balcomb D, Jones R (1980) Passive solar design handbook: vol 1 – passive solar design concepts. Total Environment Action, Inc.; vol 2 – passive solar design analysis. Los Alamos Scientific Laboratory; vol 3 – passive solar design analysis. Los Alamos National Laboratory. Available from National Technical Information Service, AlexandriaGoogle Scholar
  9. 9.
    Hastings SR (1977) Three proposed typical house designs for energy conservation research, NBSIR 77-1309. National Institute for Standards and Technology (NIST), GaithersburgGoogle Scholar
  10. 10.
    Mazria E (1979) The passive solar energy book, Expanded professionalth edn. Rodale Press, Emmaus. ISBN 0-87857-238-4Google Scholar
  11. 11.
    Loftness V (1978) Regional guidelines for building passive energy conserving homes. US Department of Housing and Urban Development, Washington, DC, HUD-PDR-355Google Scholar
  12. 12.
    Hastings R, Crenshaw R (1977) NBS BSS 104 window design strategies. National Technical Information Service, AlexandriaGoogle Scholar
  13. 13.
    Porteous Colin, MacGrego Kerr (2005) Solar architecture in cool climates. Earthscan, Longon. ISBN 10: 1-84407-281-1 and SIBN-13: 978-1-84407-281-1Google Scholar
  14. 14.
    Hestnes AG, Hastings R, Saxhof B (eds) (1997/2003) Solar energy houses – strategies, technologies and examples. Earthscan, London. ISBN 1-902916-43-3Google Scholar
  15. 15.
    Larsen S (2010) Built examples: house Frei, Architekturbüro Larsen, Erlachstrasse 25, AT-6912 Hörbranz.
  16. 16.
    SIA (1989) Demonstrationsprojekt Schulhaus Gumpenwiesen, Reihe “Planungsunterlagen zu Energie und Gebäude”, SIA-Dokumentation; D035. SIA Schweizerischer Ingenieur- und Architekten-Verein, ZürichGoogle Scholar
  17. 17.
    Hastings R (ed) (2010) Lessons from exemplary housing renovations, IEA SHC 37B.
  18. 18.
    METEOTEST (2010) Meteonorm 6.1. Fabrikstrasse 14, CH-3012 Bern.
  19. 19.
    Hastings R (2004) Passivhäuser und Lebensfreude. In: Eighth European Passivhaus Tagung und Messe, Krems, 16–17 Apr 2004.
  20. 20.
    Troska Christoph (2009) Vom einfachglas zum vakuumisolierglas. Pilkington, WikonGoogle Scholar
  21. 21.
  22. 22.
    Hermes M (2002) Aktuelles aus dem Regelwerk. In: Die neue wärmedämmtechnische Bewertung von Fenstern mit Einführung der EnEV 2002, Teil 1: Grundlagen. Integratio® – Forum.
  23. 23.
    ZIEGE (2010) Wärmespeicherung – planungsregeln. Verband Österreischer Ziegelwerke, Wien.
  24. 24.
    Chiras D (2002) The solar house: passive heating and cooling. Chelsea Green, White River Junction. ISBN 1931498121Google Scholar
  25. 25.
    SIA (1981) SIA 381/1 baustoff-kennwerte. Schweizerischer Ingenieur- und Architektenverein, Zürich also copyright 2000 SIAGoogle Scholar
  26. 26.
    Hässig W, Hardegger P (1996) Messprojekt direktgewinnhaus trin. Forschungsstelle für Solararchitektur, Zürich, Dokumente: 194637.pdf.
  27. 27.
  28. 28.
    Douglass E (10 Nov 2007) A pioneer refuses to fade away His passion for solar still burns – forty years ago, Harold Hay came up with a way to heat and cool homes using water and the sun. Los Angeles Times, Los AngelesGoogle Scholar
  29. 29.
    Fachverband Transparente Wärmedämmung e.V (2000) Bestimmung des solaren energiegewinns durch massivwände mit transparenter wärmedämmung. Fachverband Transparente Wärmedämmung e.V, Gundelfingen.
  30. 30.
    Humm O (1998) Transparente wärmedämmung – mehr kollektor als wärmedämmung. Oerlikon Journalisten AG, ZürichGoogle Scholar
  31. 31.
    Domenig-Meisinger I, Willensdorfer A, Krauss B, Aschauer J, Lang G (2007) Erstes mehrfamilien-passivhaus im altbau passivhausstandard und -komfort in der altbausanierung am beispiel eines großvolumigen MFH in Linz. BMVIT, Vienna.
  32. 32.
    Domenig-Meisinger I, Grünewald S, Rottensteiner S (2010) Apartment building on Makartstraße, Linz AT, IEA SHC Task 37 Results. IEA, Linz.
  33. 33.
    Hastings R, Morck O (eds) (2000) Solar air systems – a design handbook. Earthscan, London. ISBN 1-873936-86-9Google Scholar
  34. 34.
    Hastings R (ed) (2000) Solar air systems – built examples. Earthscan, London. ISBN 1-873936-85-0Google Scholar
  35. 35.
    Schoch R (1995) Reihenhäuser wydacker, zollikofen. Aarplan Architects/Matter + Ammann HVAC, Bern.
  36. 36.
    Hastings R, Wall M (2007) Sustainable solar housing: vol 1, strategies and solutions. ISBN-13: 978-184407-325-2; vol 2, exemplary buildings and technologies. ISBN-13: 978-184407-326-9. Earthscan, LondonGoogle Scholar
  37. 37.
    Hanus C, Hastings R (2007) Bauen mit solarenergie. Vdf Hochschulverlag AG, Zürich. ISBN 978-3-7281-3085-3Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.AEU Ltd. Architecture, Energy & EnviornmentWallisellenSwitzerland