Skip to main content

Landscape Planning for Sustainable Water Usage

  • Reference work entry
Sustainable Built Environments
  • 3253 Accesses

Definition of the Subject and Its Importance

Extreme events such as floods, droughts, as well as water scarcity and poor water quality have been increasing globally during recent decades. Global change phenomena, increasing population density in some parts of the world, as well as multiple land use of landscapes such as agricultural management, urbanization, and industrialization are some of the main reasons for these problems. Both the mentioned reasons as well as the resulting environmental consequences, represent some of the world’s most pressing problems that occur on different scales – from the field to the region or even globally. In recent decades, integrated river basin and environmental management – including landscape planning – have been introduced as a potential but challenging instrument to tackle these complex transdisciplinary problems around the world. However, several problems still exist before an effective integrated planning and management can be realized. This...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 449.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Catchment (or river basin):

The drainage area of a stream, river, or lake. It has a common outlet for its surface runoff.

Ecosystem:

An arbitrary ensemble of macroscopic matter that captures, stores, and uses energy to circulate and rearrange matter within the system.

Evaporation (of water):

(1) The emission of water vapor by a free surface at a temperature below the boiling point. (2) The amount of water evaporated.

Interception loss:

Rainfall evaporated from canopy and litter.

Landscape:

The traits, patterns, and structure of a specific geographic area, including its biological composition, its physical environment, and its anthropogenic or social patterns. An area where interacting ecosystems are grouped and repeated in similar form.

Landscape ecology:

The science of studying and improving the relationship between spatial pattern and ecological processes on a multitude of landscape scales and organizational levels. Landscape ecology is highly interdisciplinary and integrates biophysical and analytical approaches with humanistic and holistic perspectives across natural and social sciences.

Landscape structure, function, and pattern structure:

Is determined by the composition, the configuration, and the proportion of different patches across the landscape, while function refers to how each element in the landscape interacts based on its life-cycle events. Pattern is the term for the contents and internal order of a heterogeneous area of land.

Landscape planning:

The aspect of the land use planning process that deals with physical, biological, esthetic, cultural, and historical values and with the relationships and planning between these values, land uses, and the environment.

Landscape water balance:

Inventory of water based on the principle that during a certain time interval, the total water gain to a given catchment area or body of water must equal the total water loss plus the net change in storage in the catchment or body of water. In hydrology, a water balance equation can be used to describe the flow of water in and out of a system. A system can be one of several hydrological domains, such as a column of soil or a drainage basin.

Scale:

A definition applied to the time, space, and mass component of any quantity is that scale denotes the resolution within a range of a measured quantity. This definition encompasses two important, interacting facets of scale: resolution and range. Resolution or “grain” refers to the finest distinction that can be made in an observation set, while range or “extent” refers to the span of all entities that can be detected in the data.

Transpiration:

Process by which water from vegetation is transferred into the atmosphere in the form of vapor.

Bibliography

Primary Literature

  1. Falkenmark M, Rockström J (2004) Balancing water for humans and nature. Earthscan Publications Ltd, London

    Google Scholar 

  2. Odum E (1969) The strategy of ecosystem development. Science 164:262–270

    Article  Google Scholar 

  3. Calder IR, Newson MD (1979) Land use and upland water resources in Britain – a strategic look. Water Resour Bull 15:1628–1639

    Article  Google Scholar 

  4. NRC (2001) Assessing the TDML approach to water quality management. Committee to access the scientific basis of the total maximum daily load approach to water pollution reduction, Water Science and Technology Board, Division on Earth and Life Studies. National Research Council, Washington DC

    Google Scholar 

  5. EC (European Commission) (2000) Directive of the European Parliament and of the Council 2000/60/EC establishing a framework for community action in the field of water policy. Official Journal 2000L 327/1, European Commission, Brussels

    Google Scholar 

  6. Hawkins V, Selman P (2002) Landscape scale planning: exploring alternative land use scenarios. Landscape Urban Plan 60:211–224

    Article  Google Scholar 

  7. Flügel W-A (1996) Delineating hydrological response units by geographical information system analyses for regional hydrological modeling using PRMS/MMS in the drainage basin of the river Bröl, Germany. Hydrol Process 9:423–436

    Article  Google Scholar 

  8. Wohlrab B, Ernstberger H, Meuser A, Sokollek V (1992) Landschaftswasserhaushalt. Verlag Paul Parey, Hamburg und Berlin, p 352

    Google Scholar 

  9. Fohrer N, Eckhardt K, Haverkamp S, Frede H-G (1999) Auswirkungen von Landnutzungsänderungen auf den Wasserhaushalt eines ländlichen Einzugsgebietes in einer peripheren Region. Z f Kulturtechnik und Landentwicklung 40:202–206

    Google Scholar 

  10. Fohrer N, Thielen J, de Roo A (2003) Recent developments in river basin research and development. Phys Chem Earth 28(33–36):1279–1387

    Google Scholar 

  11. Hörmann G, Horn A, Fohrer N (2005) The evaluation of land-use options in mesoscale catchments. Prospects and limitations of eco-hydrological models. Ecol Model 187:3–14

    Article  Google Scholar 

  12. Steinhardt U, Volk M (eds) (1999) Regionialisierung in der Landschaftsökologie. Teubner, Stuttgart, Leipzig

    Google Scholar 

  13. Urban DL (2005) Modeling ecological processes across scales. Ecology 86:1996–2006

    Article  Google Scholar 

  14. Bastian O, Krönert R, Lipsky Z (2006) Landscape diagnosis on different space and time scales – a challenge for landscape planning. Landscape Ecol 21:359–374

    Article  Google Scholar 

  15. Hein L, van Koppen K, de Groot RS, van Ierland EC (2006) Spatial scales, stakeholders and the valuation of ecosystem services. Ecol Econ 57:209–228

    Article  Google Scholar 

  16. Krysanova V, Müller-Wohlfeil D-I, Becker A (1996) Integrated modeling of hydrology and water quality in mesoscale watersheds. PIK-report 18, Potsdam

    Google Scholar 

  17. Steinhardt U, Volk M (2003) Meso-scale landscape analysis based on landscape balance investigations: problems and hierarchical approaches for their resolution. Ecol Model 68:251–265

    Article  Google Scholar 

  18. Volk M, Hirschfeld J, Dehnhardt A, Schmidt G, Bohn C, Liersch S, Gassman PW (2008) Integrated ecological-economic modeling of water pollution abatement management options in the Upper Ems River Basin. Ecol Econ 66:66–76

    Article  Google Scholar 

  19. Riitters KH, Wickham JD (1997) A landscape atlas of the Chesapeak Bay Watershed. Environmental Research Center, Norris

    Google Scholar 

  20. O’Neill RV (1986) A hierarchical concept of ecosystems. Princeton University Press, Princeton

    Google Scholar 

  21. Klijn JA (1995) Hierarchical concepts in landscape ecology and its underlying disciplines. DLO winand staring centre report 100, Wageningen

    Google Scholar 

  22. Steinhardt U, Volk M (2000) Von der Makropore zum Flusseinzugsgebiet – Hierarchische Ansätze zum Verständnis des landschaftlichen Wasser- und Stoffhaushaltes. Petermann’s Geogr Mitt 2(2000):80–91

    Google Scholar 

  23. Steinhardt U, Volk M (2002) The investigation of water and matter balance on the meso-landscape scale: a hierarchical approach for landscape research. Landscape Ecol 17:1–12

    Article  Google Scholar 

  24. Helming K, Frielinghaus M (1999) Skalenaspekte der Bodenerosion. In: Steinhardt U, Volk M (eds) Regionalisierung in der Landschaftsökologie Forschung – Planung – Praxis. Teubner, Stuttgart-Leipzig, pp 79–95

    Google Scholar 

  25. Volk M (1999) Interactions between landscape balance and land use in the Dessau region, eastern Germany. A hierarchical approach. In: Hlavinkova P, Munzar J (eds) (1999) Regional prosperity and sustainability. Proceedings of the 3rd moravian geographical conference CONGEO’99, pp 201–209

    Google Scholar 

  26. Mitchell B (2005) Integrated water resource management, institutional arrangements, and land-use planning. Environ Plan A 37(8):1335–1352

    Article  Google Scholar 

  27. Kiemstedt H, von Haaren C, Mönnecke M, Ott S (1997) Landschaftsplanung – Inhalte und Verfahrensweisen. Der Bundesminister für Umweltschutz und Reaktorsicherheit, Naturschutz und Reaktorsicherheit

    Google Scholar 

  28. Best A, Lu Z, McMahon T, Western A, Vertessy R (2003) A critical review of paired catchment studies with reference to seasonal flows and climatic variability. CSIRO land and water technical report 25/03. www.clw.csiro.au/publications/technical2003/tr25–03.pdf. Accessed 17 November 2009

  29. Fohrer N, Haverkamp S, Frede H-G (2005) Assessment of the effects of land use pattern on hydrologica landscape functions: development of sustainable land use concepts for low mountain range areas. Hydrol Process 19:659–672

    Article  Google Scholar 

  30. Calder IR (1992) Hydrologic effects of land use change. In: Maidment DR (ed) Handbook of hydrology. McGraw-Hill, Inc, New York, pp 13:1–13:5

    Google Scholar 

  31. Hibbert AR (1967) Forest treatment effects on water yield. In Sopper WE, Lull HW (eds) International symposium on forest hydrology, Pennsylvania, September 1965, Pergamon, Oxford, pp 99–103

    Google Scholar 

  32. Bosch JM, Hewlett JD (1982) A review of catchment experiments to determine the effect of vegetation changes on water yield and evapotranspiration. J Hydrol 55:3–23

    Article  Google Scholar 

  33. Smith RE, Scott DF (1992) The effects of afforestation on low flows in various regions of South Africa. Water SA 18:185–194

    Google Scholar 

  34. Burch GJ, Bath RK, Moore ID, O’Loughlin EM (1987) Comparative hydrological behaviour of forested and cleared catchments in Southeastern Australia. J Hydrol 90:19–42

    Article  Google Scholar 

  35. Peck AJ, Williamson DR (1987) Effects of forest clearing on groundwater. J Hydrol 94:47–65

    Article  Google Scholar 

  36. Williams JR, Rose SC, Harris GL (1995) The impact on hydrology and water quality of woodland and set-aside establishment on lowland clay soils. Agric Ecosyst Environ 54:215–222

    Article  Google Scholar 

  37. Whitaker A, Alila Y, Beckers J, Toews D (2002) Evaluating peak flow sensitivity to clear-cutting in different elevation bands of a snowmelt-dominated mountainous catchment. Water Resour Res 38:11–17

    Article  Google Scholar 

  38. Kiersch B (2000) Land-use impacts on water resources: a literature review. Discussion paper No. 1. Land-water linkage in rural watersheds. Electronic workshop (September 18–October 27, 2000), FAO, Rome www.fao.org/ag/agl/watershed/watershed/en/eworken/idxewken.stm. Accessed 17 November 2009

  39. Thomas RB, Megahan WF (1998) Peak flow responses to clearcutting and roads in small and large basins, western Cascades Oregon: a second opinion. Water Resour Res 34:3393–3403

    Article  Google Scholar 

  40. Whitehead PG, Robinson M (1993) Experimental basin studies – an international and historical perspective of forest impacts. J Hydrol 145:217–230

    Article  Google Scholar 

  41. Crawford NH, Linsey RK (1966) Digital simulations in hydrology – stanford watershed model IV, technical report 39. Department of Civil Engineering, Stanford University, Stanford

    Google Scholar 

  42. Singh VP (ed) (1995) Computer models of watershed hydrology. Water Resources Publications, Highland Ranch

    Google Scholar 

  43. Dyck S (1983) Overview on the present status of the concepts of water balance models. In: Van der Beken A, Herrmann A (eds) New approaches in water balance computations., pp 3–19, IAHS Publication 148

    Google Scholar 

  44. Xu C-Y, Seibert J, Halldin S (1996) Regional water balance modeling in the NOPEX area: developemnt and application of monthly water balance models. J Hydrol 180:211–236

    Article  Google Scholar 

  45. Nemec J (1993) Comparison and selection of existing hydrological models for the simulation of the dynamic water balance processes in basins of different sizes and on different scales. Commission Internationale de L’hydrologie du Bassin du Rhin, report II-7, Lelystad, the Netherlands

    Google Scholar 

  46. Liebscher H-J, Wilke K, Schultz GA, Schumann A (1996) Mathematisches Modell zur Untersuchung des Einflusses von Klima- und Landnutzungsänderungen auf den Hoch- und Niedrigwasserabfluss im Einzugsgebiet der Model. Umweltbundesamt Texte 33/96, Berlin

    Google Scholar 

  47. Volk M, Bannholzer M (1999) Auswirkungen von Landnutzungsänderungen auf den Gebietswasserhaushalt: Anwendungsmöglichkeiten des Modells “ABIMO” für regionale Szenarien. Geoökodynamik 20:193–210

    Google Scholar 

  48. Lorz C, Volk M, Schmidt G (2007) Considering spatial distribution and functionality of forests in a modeling framework for river basin management. For Ecol Manage 248:17–25

    Article  Google Scholar 

  49. Werner A, Eulenstein F, Schindler U, Müller L, Ryskowski L, Kedziora A (1997) Grundwasserneubildung und Landnutzung. Z f Kulturtechnik und Landentwicklung 38:106–113

    Google Scholar 

  50. Fohrer N, Möller D, Steiner N (2002) An interdisciplinary modeling approach to evaluate the effects of land use change. Phys Chem Earth 27:655–662

    Article  Google Scholar 

  51. Van Rompaey AJJ, Govers G, Van Hecke E, Jakobs K (2001) The impacts of land use policy on the soil erosion risk: a case study in central Belgium. Agric Ecosyst Environ 83:83–94

    Article  Google Scholar 

  52. Onstad CA, Jamieson DG (1970) Modeling the effect of land use modifications on runoff. Water Resour Res 6:1287–1295

    Article  Google Scholar 

  53. Hookey GR (1987) Prediction of delays in groundwater response to catchment clearing. J Hydrol 94:181–198

    Article  Google Scholar 

  54. Calder IR, Hall RL, Bastable HG, Gunston HM, Shela O, Chirwa A, Kafundu R (1995) The impact of land use change on water resources in sub-Saharan Africa: a modeling study of Lake Malawi. J Hydrol 170:123–135

    Article  Google Scholar 

  55. Lørup JK, Refsgaard JC, Mazvimavi D (1998) Assessing the effect of land use change on catchment runoff by combined use of statistical tests and hydrological modeling: case studies from Zimbabwe. J Hydrol 205:147–163

    Article  Google Scholar 

  56. Abbot MB, Bathurst JC, Cunge JA, O’Connell PE, Rasmussen J (1986) An introduction to the European hydrological system–syst`eme hydrologique Europ´een, ‘SHE’. 1: History and philosophy of a physically based distributed modeling system. J Hydrol 87:45–59

    Article  Google Scholar 

  57. Dunn SM, Mackay R (1995) Spatial variation in evapotranspiration and the influence of land use on catchment hydrology. J Hydrol 171:49–73

    Article  Google Scholar 

  58. Lahmer W, Pfützner B, Becker A (1999) Großskalige hydrologische Modellierung vor dem Hintergrund unsicherer Eingangsdaten. In: Fohrer N, Döll P (eds) Modellierung des Wasser- und Stofftransports in großen Einzugsgebieten. Kassel University Press, Kassel, pp 153–161

    Google Scholar 

  59. Eckhardt K, Breuer L, Frede HG (2003) Parameter uncertainty and the significance of simulated land use change effects. J Hydrol 273:164–176

    Article  Google Scholar 

  60. Klemes V (1986) Operational testing of hydrological simulation models. Hydrolog Sci J 31:13–24

    Article  Google Scholar 

  61. Ewen J, Parkin G (1996) Validation of catchment models for predicting land-use and climate change impacts. 1. Method. J Hydrol 175:583–594

    Article  Google Scholar 

  62. Lyne V, Hollick M (1979) Stochastic time-variable rainfall–runoff modeling. Australian Natl Conf Pub 79:89–93

    Google Scholar 

  63. Arnold JG, Muttiah RS, Srinivasan R, Allen PM (2000) Regional estimation of base flow and groundwater recharge in the Upper Mississippi river basin. J Hydrol 227:21–40

    Article  Google Scholar 

  64. Heathwaite AL (2003) Making process-based knowledge useable at the operational level: a framework for modeling diffuse pollution from agricultural land. Environ Model Softw 18:753–760

    Article  Google Scholar 

  65. Neal C, Heathwaite AL (2005) Nutrient mobility within river basins: a European perspective. J Hydrol 304:477–490

    Article  Google Scholar 

  66. Franko U, Schmidt T, Volk M (2001) Modellierung des Einflusses von Landnutzungsänderungen auf die Nitratkonzentration im Sickerwasser. In: Horsch H, Ring I, Herzog F (eds) Nachhaltige Wasserbewirtschaftung und Landnutzung. Methoden und Instrumente der Entscheidungsfindung und -umsetzung. Metropolis, Marburg, pp 165–186

    Google Scholar 

  67. Neubert M, Volk M, Herzog F (2003) Modellierung und Bewertung des Einflusses von Landnutzung und Bewirtschaftungsintensität auf den potenziellen Nitrataustrag in einem mesoskaligen Einzugsgebiet. Landnutz Landentwick 44:1–8

    Google Scholar 

  68. Volk M, Franko U, Schmidt T, Herzog F, Neubert M (2001) Modeling the impact of land use changes on the groundwater quantity and quality as a base for multicriteria ecological-socioeconomic assessment in a mesoscale watershed. In: Hlavinkova P, Munzar J (eds) The 4th moravian geographical conference CONGEO '01: nature and society in regional context, Tisnov, September 10–14 2001, pp 160–168

    Google Scholar 

  69. Klauer B, Drechsler M, Messner F (2006) Multicriteria analysis under uncertainty with IANUS – method and empirical results. Environ Plan C: Govt Policy 24:235–256

    Article  Google Scholar 

  70. Volk M, Herzog F, Schmidt T, Geyler S (2001) Der Einfluss von Landnutzungsänderungen auf die Grundwasserneubildung. In: Nachhaltige Wasserbewirtschaftung und Landnutzung. Methoden und Instrumente der Entscheidungsfindung und –umsetzung. Metropolis, Marburg, pp 147–164

    Google Scholar 

  71. Horsch H, Ring I, Herzog F (eds) (2001) Nachhaltige Wasserbewirtschaftung und Landnutzung - Methoden und Instrumente der Entscheidungsfindung und - umsetzung. Metropolis, Marburg

    Google Scholar 

  72. Hülsbergen K-J (2003) Entwicklung und Anwendung eines Bilanzierungsmodells zur Bewertung der Nachhaltigkeit landwirtschaftlicher Systeme. Shaker Verlag, Aachen

    Google Scholar 

  73. Horn AL, Rueda FJ, Hörmann G, Fohrer N (2004) Implementing river water quality modeling issues in mesoscale watershed models for water policy demands – an overview on current concepts, deficits, and future tasks. Phys Chem Earth 29:725–737

    Article  Google Scholar 

  74. Payraudeau S, Cernesson F, Tournoud MG, Beven KJ (2004) Modeling nitrogen loads at the catchment scale under the influence of land use. Phys Chem Earth 29:811–819

    Article  Google Scholar 

  75. Euroharp-Project (2007) http://www.euroharp.org/toolbox/scenario.php. Accessed 6 April 2009

  76. Arnold JG, Srinivasan R, Muttiah RS, Williams JR (1998) Large area hydrologic modeling and assessment. Part 1: Model development. J Am Water Res Ass 34:73–89

    Article  Google Scholar 

  77. Volk M, Liersch S, Schmidt G (2009) Towards the implementation of the European water framework directive? Lessons learned from water quality simulations in an agricultural watershed. Land Use Policy 26:580–588

    Article  Google Scholar 

  78. Ullrich A, Volk M (2010) Influence of different nitrate–N monitoring strategies on load estimation as a base for model calibration and evaluation. Environmental monitoring and assessment. (Online First: doi: 10.1007/s10661-009-1296-8)

    Google Scholar 

  79. Schilling KE, Jha MK, Zhang Y-K, Gassmann PW, Wolter CF (2008) Impact of land use and land cover change on the water balance of a large agricultural watershed: historical effects and future directions. Water Resour Res 44:W00A09, doi:10.1029/2007WR006644

    Google Scholar 

  80. Berlekamp J, Lautenbach S, Graf N, Reimer S, Matthies M (2007) Integration of MONERIS and GREAT-ER in the decision support system for the German Elbe river basin. Environ Model Softw 22:239–247

    Article  Google Scholar 

  81. Hirschfeld J, Dehnhardt A, Dietrich J (2005) Socioeconomic analysis within an interdisciplinary spatial decision support system for an integrated management of the Werra River Basin. Limnologica 35:234–244

    Article  Google Scholar 

  82. Mödinger J, Kobus H, Schnitzler S, Lehn H (2004) Ansätze fu¨r eine nachhaltige Grundwasserbewirtschaftung und -nutzung im Rhein-Neckar-Raum bei konkurrierenden Interessen. Wasser Wirtschaft 94:40–45

    Google Scholar 

  83. Möltgen J, Petry D (eds) (2004) Interdisziplinäre Methoden des Flussgebietsmanagements. Workshopbeiträge, 15./16. März 2004. IfGI prints 21. Münster: Institut für Geoinformatik, Universität Münster, Münster, pp 352

    Google Scholar 

  84. Schneck A, Haakh F, Lang U (2004) Multikriterielle Optimierung der Grundwasserbewirtschaftung – dargestellt am Beispiel des Wassergewinnungsgebiets Donauried. Wasserwirtschaft 12:32–39

    Google Scholar 

  85. Feld CK, Rödiger S, Sommerhäuser M, Friedrich G (eds) (2005) Typologie, Bewertung, Management von Oberflächengewässern. Limnologie aktuell 11, E. Schweizerbart’sche Verlagsbuchhandlung (Nägele u. Obermiller). Stuttgart, Germany, p 243

    Google Scholar 

  86. Giupponi C (2007) Decision support systems for implementing the European water framework directive: the MULINO approach. Environ Model Softw 22:248–258

    Article  Google Scholar 

  87. Van Delden H, Luja P, Engelen G (2007) Integration of multi-scale dynamic spatial models of socio-economic and physical processes for river basin management. Environ Model Softw 22:223–238

    Article  Google Scholar 

  88. Lautenbach S, Berlekamp J, Graf N, Seppelt R, Matthies M (2009) Scenario analysis and management options for sustainable river basin management: application of the Elbe DSS. Environ Model Softw 24:26–43

    Article  Google Scholar 

  89. Burstein F, Holsapple CW (eds) (2008) Handbook on decision support systems, vol 1 (854 pp) and 2 (800 pp). Springer, Heidelberg, Berlin, New York

    Google Scholar 

  90. Newman S, Lynch T, Plummer AA (1999) Success and failure of decision support systems: learning aswe go. In: Proceedings of the American society of animal science. http://www.asas.org/jas/symposia/proceedings/0936.pdf. Accessed online 25 February 2009

  91. Zapatero EG (1996) A quality assessment instrument for multicriteria decision support software. Benchmarking Qual Manage Technol 3:17–27

    Article  Google Scholar 

  92. Uran O, Janssen R (2003) Why are spatial decision support systems not used? Some experiences from the Netherlands. Comput Environ Urban Syst 27:511–526

    Article  Google Scholar 

  93. Briscoe J (2005) Water as an economic good. In: Brouwer R, Pearce DW (eds) Cost-benefit analysis and water resources management. Edward Elgar, Cheltenham

    Google Scholar 

  94. Young RA (2005) Determining the economic value of water: concepts and methods. Resources for the Future, Washington DC

    Google Scholar 

  95. Brouwer R, Hofkes M (2008) Integrated hydro-economic modeling: approaches, key issues and future research directions. Ecol Econ 66:16–22

    Article  Google Scholar 

  96. Rode M, Klauer B, Petry D, Volk M, Wenk G, Wagenschein D (2008) Integrated nutrient transport modeling with respect to the implementation of the European WFD: the Weisse Elster case study, Germany. Water SA 34:490–496

    Google Scholar 

  97. De Kok J-L, Kofalk S, Berlekamp J, Hahn B, Wind H (2009) From design to application of a decision-support system for integrated river-basin management. Water Resour Manage 23:1781–1811

    Article  Google Scholar 

  98. Volk M, Lautenbach S, van Delden H, Newham LTH, Seppelt R (2009): How can we make progress with decision support systems in landscape and river basin management? Lessons learned from a comparative analysis of four different decision support systems. Environ Manage (Online First: doi: 10.1007/s00267-009-9417-2)

  99. Gleick PH (1998) Water in crisis: paths to sustainable water use. Ecol Appl 8:571–579

    Article  Google Scholar 

Books and Reviews

  • Beven KJ (2001) Rainfall-runoff modeling: the primer. Wiley, Chichester

    Google Scholar 

  • Brutsaert W (2005) Hydrology – an introduction. Cambridge University Press, New York

    Book  Google Scholar 

  • Davie T (2003) Fundamentals of hydrology. Routledge fundamentals of physical geography. Routledge, London

    Google Scholar 

  • Dingman SL (2002) Physical hydrology. Prentice Hall, Upper Saddle River

    Google Scholar 

  • Dunne T, Leopold LB (1978) Water in environmental planning. W.H. Freeman & Company, San Francisco

    Google Scholar 

  • Evers M (2008) Decision support systems for integrated river basin management: requirements for appropriate tools and structures for a comprehensive planning. Shaker Verlag, Aachen

    Google Scholar 

  • Federal Interagency Stream Restoration Working Group (FISGRWG, 1998/2001) Stream corridor restoration: principles, processes, and practices. GPO Item No. 0120-A; SuDocs No. A 57.6/2:EN3/PT.653 (http://www.nrcs.usda.gov/technical/stream_restoration/newgra.html). Accessed 11 April 2009

  • Gassman PW, Reyes MR, Green CH, Arnold JG (2007) The soil and water assessment tool: historical development, applications, and future research directions. Trans ASABE 50:1211–2150

    Google Scholar 

  • Gooch G, Stlnacke P (2010) Science, policy and stakeholder in water management: an integrated approach to river basin management. Earthscan, London

    Google Scholar 

  • Heathcote IW (1998) Integrated watershed management principles and practice. Wiley, Chichester

    Google Scholar 

  • Mysiak J, Henrikson HJ, Sullivan C, Bromley J, Pahl-Wostl C (eds) (2010) The adaptive water resource management handbook. Earthscan, London, Sterling

    Google Scholar 

  • Shaw E (1994) Hydrology in practice. Stanley Thornes, Cheltenham

    Google Scholar 

  • Ward RC, Robinson M (1999) Principles of hydrology. McGraw-Hill, London

    Google Scholar 

  • Wohl EE (2001) Virtual rivers. Lessons learned from the mountain rivers of the Colorado Front Range. Yale University Press, New Haven

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Volk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this entry

Cite this entry

Volk, M. (2013). Landscape Planning for Sustainable Water Usage . In: Loftness, V., Haase, D. (eds) Sustainable Built Environments. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5828-9_216

Download citation

Publish with us

Policies and ethics