Skip to main content

Wind Power, Aerodynamics and Blade Technology 2

  • Reference work entry
  • First Online:
Renewable Energy Systems

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 849.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

A :

Rotor area

a :

Axial induction factor

a′:

Tangential induction factor

B :

Number of blades

C d :

Drag coefficient

C l :

Lift coefficient

C p :

Power coefficient

C T :

Thrust coefficient

C θ :

Tangential velocity in far wake

D :

Aerodynamic drag

L :

Aerodynamic lift

M R :

Rotor shaft torque

M :

Bending moment, torque

P :

Power

p :

Load

R :

Blade radius

r :

Local radius on blade

T :

Thrust

u :

Axial velocity in the rotor plane

u 1 :

Axial velocity in far wake

V o :

Wind speed

V rel :

Relative velocity to blade

W:

Induced velocity

α :

Angle of attack

θ :

Local blade angle with rotor plane

ρ :

Air density

σ :

Solidity, material stress

Ф:

Flow angle

ω :

Angular velocity

Bibliography

  1. Glauert H (1935) Airplane propellers, Division L. In: Durand WF (ed) Aerodynamic theory, vol 4. Springer, Berlin, pp 169–360

    Chapter  Google Scholar 

  2. Snel H, Schepers JG (1995) Joint investigation of dynamic inflow effects and implementation of an engineering method. ECN-C-94-107

    Google Scholar 

  3. Schepers JG, Snel H (1995) Dynamic inflow: yawed conditions and partial span pitch control. ECN-C-95-056

    Google Scholar 

  4. Betz A (1926) Wind energy and its use by windmills. Ökobuch, Staufen

    Google Scholar 

  5. Hansen MOL (2008) Aerodynamics of wind turbine, 2nd edn. Earthscan, London

    Google Scholar 

  6. IEC 61400–1 Ed.3 CD. 2. revision (2004) ‘Wind Turbines. Part 1: Design requirements,’ edited by IEC TC88-MT1

    Google Scholar 

  7. Veers P (1988) ‘Three-dimensional wind simulation’ SANDIA report. SAND88-0152 UC-261

    Google Scholar 

  8. Mann J (1998) Wind field simulation. Probl Eng Mech 13:269–282

    Article  Google Scholar 

  9. Øye S (1991) Dynamic stall, simulated as a time lag of separation. In: McAnulty KF (ed) Proceedings of the 4th IEA symposium on the aerodynamics of wind turbines, Rome, ETSU-N-118

    Google Scholar 

  10. Leishman JG, Beddoes TS (1989) A semi-empirical model for dynamic stall. J Am Helicopter Soc 34(3):3–17

    Google Scholar 

  11. Hansen MH, Gaunaa M, Madsen HA (2004) A Beddoes-Leishman type dynamic stall model in state-space and indicial formulations. Risoe-R-1354(EN)

    Google Scholar 

  12. Sankar NL, Wake BE, Lekoudis SG (1986) Solution of the unsteady Euler equations for fixed and rotor wind configurations. J Aircr 23(4):283–289

    Article  Google Scholar 

  13. Jameson A, Baker TJ (1983) Solution of the Euler equations for complex configurations. AIAA Paper 83–1919

    Book  Google Scholar 

  14. Pulliam TH (1984) Euler and thin layer Navier-Stokes codes: ARC2D, ARC3D, notes for computational fluid dynamics users workshop, The University of Tennessee Space Institute, 12–16 March 1984

    Google Scholar 

  15. Agarwal RK, Deese JE (1997) Euler calculations for flowfield of a helicopter rotor in hover. J Aircr 24(4):231–238

    Article  Google Scholar 

  16. Hansen MOL, Michelsen JA, Sørensen NN (1994) Navier-Stokes solver for rotating wing. In: European wind energy conference, Thessaloniki, pp 557–561

    Google Scholar 

  17. Hansen MOL, Sørensen JN, Michelsen JA, Sørensen NN (1997) A Global Navier-Stokes Rotor prediction Model. AIAA 97–097

    Book  Google Scholar 

  18. Sørensen NN, Hansen MOL (1998) Rotor performance predictions using a Navier-Stokes method. AIAA 98–0025

    Book  Google Scholar 

  19. Xu G, Sankar LN (1999) Computational study of horizontal axis wind turbines. AIAA 99–0042, Reno, January 1999

    Book  Google Scholar 

  20. Duque EPN, van Dam CP, Hughes S (1999) Navier-Stokes simulations of the NREL combined experiment phase II rotor. In: Proceedings 1999, ASME wind energy symposium, 37th AIAA aerospace science meeting and exhibit, AIAA 99–0037, Reno, January 1999

    Google Scholar 

  21. Sørensen NN, Michelsen JA (2000) Aerodynamic predictions for the unsteady aerodynamics experiment phase-II rotor at the National Renewable Energy Laboratory. AIAA-2000-0037

    Book  Google Scholar 

  22. Sørensen JN (1986) Three-level viscous-inviscid interaction technique for the prediction of separated flow past rotating wing. PhD thesis, AFM-83-03, Technical University of Denmark

    Google Scholar 

  23. Fingersh LJ, Simms D, Hand M, Jager D, Contrell J, Robinson M, Schreck S, Larwood S (2001) Wind tunnel testing of NREL’s unsteady aerodynamics experiment. AIAA-2001-0035 Paper, 39th Aerospace sciences meeting & exhibit, Reno

    Google Scholar 

  24. Simms D, Schreck S, Hand M, Fingersh LJ (2001) NREL unsteady aerodynamics experiment in the NASA-Ames wind tunnel: a comparison of predictions to measurements. NREL/TP-500-29494, June 2001

    Google Scholar 

  25. Sørensen NN, Michelsen JA, Schreck S (2002) Navier-Stokes predictions of the NREL Phase VI rotor in the NASA Ames 80-by-120 wind tunnel. AIAA-2002-0032

    Google Scholar 

  26. Menter FM (1993) Zonal two equation k-ω turbulence models for aerodynamic flows. AIAA-paper-932906

    Book  Google Scholar 

  27. Spalart PR, Allmaras SR (1992) A one-equation turbulence model for aerodynamic flows. AIAA-92-0439

    Book  Google Scholar 

  28. Travin A, Shur M, Strelets M (1999) Detached-eddy simulation past a circular cylinder. Flow Turbul Combust 63:293–313

    Article  MATH  Google Scholar 

  29. Strelets M (2001) Detached eddy simulations of massively separated flows. AIAA-2001-0879

    Book  Google Scholar 

  30. Sørensen JN, Shen WZ (2002) Numerical modelling of wind turbine wakes. J Fluids Eng 124(2):393–399

    Article  Google Scholar 

  31. Voutsinas S, Belessis M, Huberson S (1993) Dynamic inflow effects and vortex particle methods. In: Proceedings of the European community wind energy conference, Germany, pp 428–431

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin O. L. Hansen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this entry

Cite this entry

Hansen, M.O.L. (2013). Wind Power, Aerodynamics and Blade Technology 2. In: Kaltschmitt, M., Themelis, N.J., Bronicki, L.Y., Söder, L., Vega, L.A. (eds) Renewable Energy Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5820-3_79

Download citation

Publish with us

Policies and ethics