Skip to main content

Bioethanol from Celluloses

  • Reference work entry
  • First Online:
Renewable Energy Systems
  • 5488 Accesses

Definition of the Subject

Bioethanol can be produced by fermentation of sugar present in the carbohydrate fractions (i.e., hemicelluloses and cellulose) available in all lignocellulosic materials. These could be agricultural residues (e.g., wheat straw, corn stover, sugarcane bagasse), forest residues (e.g., branches, tops, saw dust, thinning material), and energy crops (e.g., salix, hemp, Miscanthus, switchgrass).

To make ethanol from cellulosic materials is very similar to making ethanol from starch. First, the carbohydrates, hemicelluloses and cellulose, have to be hydrolyzed to monomer sugars and after that fermented to ethanol by a microorganism (e.g., yeast). There are, however, two major differences compared with starch ethanol:

  • The structure of the lignocellulosic material is more difficult to break down due to stronger bonds between the sugar molecules in cellulose and the interaction between cellulose,...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 849.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Bioethanol:

Ethanol produced by fermentation of sugars from plant materials, for example, sugar, starch, or cellulose.

Enzymatic hydrolysis:

A reaction where enzymes are used to catalyze splitting of molecules to smaller units by addition of water. Here, enzymatic hydrolysis refers to splitting of cellulose to glucose.

Ethanol fermentation:

The use of microorganism, in most cases yeast, for conversion of sugars to ethanol.

Flow-sheet design:

The use of computer programs for design and/or rating of complex production facilities, usually based on a conceptual drawing (flow sheet) of the process.

Lignocellulosic material:

A common name for plant biomass containing cellulose, hemicellulose, and lignin (e.g., hardwood, softwood, straw, bagasse).

Pentose fermentation:

Fermentation of sugars containing five carbon atoms, like xylose and arabinose, which are the main constituents in the hemicellulose fraction in agricultural residues and hardwoods.

Pretreatment:

Lignocellulosic material is by nature very recalcitrant to degradation. By pretreating the material, the structure is made more accessible for degradation by enzymes or microorganisms.

Process integration:

To design the unit operations involved in a process while considering the interaction between the units and to combine them in an optimal way. For instance, efficient use of heat and power is made possible by utilization of, for example, waste heat internally (in the plant), or externally (in a nearby plant), which can diminish requirement for expensive equipment, such as steam boilers.

Second-generation bioethanol:

Ethanol produced – in a sustainable way – from lignocellulosic materials (e.g., forest or agricultural materials).

Bibliography

Primary Literature

  1. Renewable fuels association, http//www.ethanolrfa.org

  2. Farrell AE, Plevin RJ, Turner BT, Jones AD, O’Hare M, Kammen DM (2006) Ethanol can contribute to energy and environmental goals. Science 311:506–508

    Article  Google Scholar 

  3. Lundqvist J, Teleman A, Junel L, Zacchi G, Dahlman O, Tjerneld F, Stalbrand H (2002) Characterization of galactoglucomannan extracted from spruce (Picea abies) by heat-fractionation at different conditions. Carbohydr Polym 48(1):29–39

    Article  Google Scholar 

  4. Frederick WJ, Lien SJ, Courchene CE, DeMartini NA, Ragauskas AJ, Iisa K (2008) Co-production of ethanol and cellulose fiber from Southern Pine: a technical and economic assessment. Biomass Bioenergy 32:1293–1302

    Article  Google Scholar 

  5. Söderström J (2004) Optimization of two-step steam pretreatment of softwood for bioethanol production. PhD thesis, LUTKDH/(TKKA-1002)/1-75/(2004). Lund University, Sweden

    Google Scholar 

  6. Grohmann K, Torget R, Himmel M (1986) Dilute acid pretreatment of biomass at high solids concentrations. Biotechnol Bioeng Symp 17:135–151

    Google Scholar 

  7. Wyman CE, Dale BE, Elander RT, Holtzapple M, Ladisch MR, Lee YY, Mitchinson C, Saddler JN (2009) Comparative sugar recovery and fermentation data following pretreatment of poplar wood by leading technologies. Biotechnol Prog 25(2):333–339

    Article  Google Scholar 

  8. Sassner P, Galbe M, Zacchi G (2006) Bioethanol production based on simultaneoussaccharification and fermentation of steam-pretreated Salix at high drymatter content. Enzyme Microb Technol 39:756–762

    Article  Google Scholar 

  9. Lee D, Owens VN, Boe A, Jerenyama P (2007) Composition of herbaceous biomass feedstocks. Report: North Central Sun Center. South Dakota State University, Brookings. http://agbiopubs.sdstate.edu/articles/SGINCI-07.pdf

  10. Neureiter M, Danner H, Thomasser C, Saidi B, Braun R (2002) Dilute-acid hydrolysis of sugarcane bagasse at varying conditions. Appl Biochem Biotechnol 98–100:49–58

    Article  Google Scholar 

  11. Linde M, Galbe M, Zacchi G (2006) Steam pretreatment of acid-sprayed and acid-soaked barley straw for production of ethanol. Appl Biochem Biotechnol 129–132:546–562

    Article  Google Scholar 

  12. Hahn-Hägerdal B, Galbe M, Gorwa-Grauslund MF, Lidén G, Zacchi G (2006) Bio-ethanol? The fuel of tomorrow from the residues of today. Trends Biotechnol 24:549–556

    Article  Google Scholar 

  13. Harris EE (1949) Wood saccharification. In: Advances in carbohydrate chemistry, vol 4. Academic, New York, pp 153–188

    Google Scholar 

  14. Wenzl HFJ (1970) The acid hydrolysis of wood. In: The chemical technology of wood. Academic, New York, pp 157–252, Chapter IV

    Google Scholar 

  15. Keller FA (1996) Integrated bioprocess development for bioethanol production. In: Wyman C (ed) Handbook on bioethanol: production and utilization. Taylor & Franics, Washington, pp 351–380

    Google Scholar 

  16. Nguyen QA, Tucker MP, Keller FA, Beaty DA, Connors KM, Eddy FP (1999) Dilute acid hydrolysis of softwoods. Appl Biochem Biotechnol 77–79:133–142

    Article  Google Scholar 

  17. Ogier JC, Ballerini D, Leygue JP, Rigal L, Pourquie J (1999) Ethanol production from lignocellulosic biomass. Oil Gas Sci Technol 54:67–94

    Article  Google Scholar 

  18. Yu ZS, Zhang HX (2004) Ethanol fermentation of acid-hydrolyzed cellulosic pyrolysate with Saccharomyces cerevisiae. Bioresour Technol 93:199–204

    Article  Google Scholar 

  19. Sheehan J (2001) The road to bioethanol. A strategic perspective of the U.S Department of Energy’s National Ethanol Program. In: Himmel ME, Baker JO, Saffler JN (eds) Glycosyl hydrolases for biomass conversion. American Chemical Society, Washington, DC, pp 2–25

    Google Scholar 

  20. Galbe M, Zacchi G (2007) Pretreatment of lignocellulosic materials for efficient bioethanol production. Adv Biochem Eng Biotechnol 108:41–65

    Google Scholar 

  21. Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83(1):1–11

    Article  MathSciNet  Google Scholar 

  22. Sanchez O, Cardona AC (2008) Trends in biotechnological production of fuel ethanol from different feedstocks. Bioresour Technol 99:5270–5295

    Article  Google Scholar 

  23. Hu G, Heitmann A, Rojas OJ (2008) Feedstock pretreatment strategies for producing ethanol from wood, bark and forest residues. Bioresources 3(1):270–294

    Google Scholar 

  24. Hendriks ATWM, Zeeman G (2009) Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour Technol 100:10–18

    Article  Google Scholar 

  25. Alvira P, Tomas-Pejo E, Ballesteros M, Negro MJ (2010) Pretreatment technologies for an efficient bioethanol production based on enzymatic hydrolysis: a review. Bioresour Technol 101:4851–4861

    Article  Google Scholar 

  26. Chandra RP, Bura R, Mabee WE, Berlin A, Pan X, Saddler JN (2007) Substrate pretreatment: the key to effective enzymatic hydrolysis of lignocellulosics? Adv Biochem Eng Biotechnol 108:67–93. doi:10.1007/10_2007_064

    Google Scholar 

  27. Datta R (1981) Energy requirements for lignocellulose pretreatment processes. Proc Biochem 16(June/July):16–19

    Google Scholar 

  28. Litzen D, Dixon D, Gilcrease P, Winter R (2006) Pretreatment of biomass for ethanol production. US Patent 20060141584, June 2006

    Google Scholar 

  29. Palmqvist E, Hahn-Hägerdal B (2000) Fermentation of lignocellulosic hydrolysates, I: inhibition and detoxification. Bioresour Technol 74:17

    Article  Google Scholar 

  30. Palmqvist E, Hahn-Hägerdal B (2000) Fermentation of lignocellulosic hydrolysates, II: inhibitors and mechanisms of inhibition. Bioresour Technol 74:25

    Article  Google Scholar 

  31. Larsson S, Palmqvist E, Hahn-Hägerdal B (1999) The generation of fermentation inhibitors during dilute acid hydrolysis of softwood. Enzyme Microb Technol 24:151

    Article  Google Scholar 

  32. Kim S, Holtzapple MT (2005) Lime pretreatment and enzymatic hydrolysis of corn stover. Bioresour Technol 96:1994

    Article  Google Scholar 

  33. Chang VS, Kaar WE, Burr B, Holtzapple MT (2001) Simultaneous saccharification and fermentation of lime-treated biomass. Biotechnol Lett 23:1327–1333

    Article  Google Scholar 

  34. Pan XJ, Arato C, Gilkes N, Gregg D, Mabee W, Pye K, Xiao ZZ, Zhang X, Saddler J (2005) Biorefining of softwoods using ethanol organosolv pulping: Preliminary evaluation of process streams for manufacture of fuel-grade ethanol and co-products. Biotechnol Bioeng 90:473–482

    Article  Google Scholar 

  35. Bouchard J, Nguyen TS, Chornet E, Overend RP (1991) Analytical methodology for biomass pretreatment 2. Characterization of the filtrates and cumulative product distribution as a function of treatment severity. Bioresour Technol 36:121–131

    Article  Google Scholar 

  36. Griebl A, Lange T, Weber H, Milacher W, Sixta H (2006) Xylo-oligosaccharide (XOS) formation through hydrothermolysis of xylan derived from viscose process. Macromol Symp 232:107–120

    Article  Google Scholar 

  37. Inbicon A/S, http://www.inbicon.com/

  38. Schmidt AS, Thomsen AB (1998) Optimization of wet oxidation pretreatment of wheat straw. Bioresour Technol 64:139–151

    Article  Google Scholar 

  39. Dale BE, Moreira MJ (1982) A freeze-explosion technique for increasing cellulose hydrolysis. Biotechnol Bioeng Symp 12:31–43

    Google Scholar 

  40. Teymouri F, Laureano-Peres L, Alizadeh H, Dale BE (2005) Optimization of the ammonia fiber explosion (AFEX) treatment parameters for enzymatic hydrolysis of corn stover. Bioresour Technol 96:2014–2018

    Article  Google Scholar 

  41. Hsu TA (1996) Pretreatment of biomass. In: Wyman CE (ed) Handbook on bioethanol production and utilization. Taylor & Francis, Washington, DC, pp 179–212, Chapter 10

    Google Scholar 

  42. Belkacemi K, Turtotte G, de Halleux D, Savoie P (1998) Ethanol production from AFEX-treated forages and agricultural residues. Appl Biochem Biotechnol 70–72:441–462

    Article  Google Scholar 

  43. Lee J (1997) Biological conversion of lignocellulosic biomass to ethanol. J Biotechnol 56:1–24

    Article  Google Scholar 

  44. Heinze T, Schwikal K, Barthel S (2005) Ionic liquids as reaction medium in cellulose functionalization. Macromol Biosci 5(6):520–525

    Article  Google Scholar 

  45. Boussaid A, Robinson J, Cai Y, Gregg DJ, Saddler JN (1999) Fermentability of the hemicellulose-derived sugars from steam-exploded softwood (Douglas fir). Biotechnol Bioeng 64:284–289

    Article  Google Scholar 

  46. Wu MM, Gregg CK, DJ BA, Beatson RP, Saddler JN (1999) Optimization of steam explosion to enhance hemicellulose recovery and enzymatic hydrolysis of cellulose in softwood. Appl Biochem Biotechnol 77–79:47–54

    Article  Google Scholar 

  47. Nguyen QA, Tucker MP, Keller FA, Beaty DA, Connors KM, Eddy FP (1999) Dilute acid hydrolysis of softwoods. Appl Biochem Biotechnol 77–79:133–142

    Article  Google Scholar 

  48. Elander RT, Dale BE, Holtzapple M, Ladisch MR, Lee YY, Mitchinson C, Saddler JN, Wyman CE (2009) Summary of findings from the biomas refining consortium for applied fundamentals and innovation (CAFI): corns stover pretreatment. Cellulose 16:649–659

    Article  Google Scholar 

  49. Öhgren K, Bura R, Saddler J, Zacchi G (2007) Effect of hemicellulose and lignin removal on enzymatic hydrolysis of steam pretreated corn stover. Bioresour Technol 98(13):2503–2510

    Article  Google Scholar 

  50. Kumar R, Wyman CE (2009) Effect of xylanase supplementation of cellulase on digestion of corn stover solids prepared by leading pretreatment technologies. Bioresour Technol 100:4203–4213

    Article  Google Scholar 

  51. Kumar R, Wyman CE (2009) Effects of cellulase and xylanase enzymes on the deconstruction of solids from pretreatment of poplar by leading technologies. Biotechnol Prog 25(2):302–314

    Article  Google Scholar 

  52. Mandels M, Reese ET (1963) Inhibition of cellulases and -glucosidases. In: Reese ET (ed) Advances in enzymic hydrolysis of cellulose and related materials. Pergamon, London, pp 115–157

    Chapter  Google Scholar 

  53. Sternberg D, Vijayakumar P, Reese ET (1977) Beta-glucosidase – microbial-production and effect on enzymatic hydrolysis of cellulose. Can J Microbiol 23:139–147

    Article  Google Scholar 

  54. Holtzapple M, Cognata M, Shu Y, Hendrickson C (1990) Inhibition of Trichorderma Reesei cellulase by sugars and solvents. Biotechnol Bioeng 36:275–287

    Article  Google Scholar 

  55. Tengborg C, Galbe M, Zacchi G (2001) Reduced inhibition of enzymatic hydrolysis of steam-pretreated softwood. Enzyme Microb Technol 28(9–10):835–844

    Article  Google Scholar 

  56. Genencor, USA. http://www.genencor.com/

  57. Novozymes, Denmark. http://www.novozymes.com/

  58. Szengyel Z, Zacchi G, Varga A, Reczey K (2000) Cellulase production of Trichoderma reesei Rut C 30 using steam-pretreated spruce – hydrolytic potential of cellulases on different substrates. Appl Biochem Biotechnol 84(6):679–691

    Article  Google Scholar 

  59. Eriksson KEL, Blanchette RA, Ander P (1990) Microbial and enzymatic degradation of wood and wood components. In: Timell TE (ed) Springer series in wood science. Springer, Berlin, p 416

    Google Scholar 

  60. Biely P (2003) Xylanolytic enzymes. In: Whitaker RJ, Voragen AGJ, Wong DWS (eds) Handbook of food enzymology. Marcel Dekker, New York, pp 879–916

    Google Scholar 

  61. Beg QK, Kapoor M, Mahajan L, Hoondal GS (2001) Microbial xylanases and their industrial applications: a review. Appl Microbiol Biotechnol 56:326–338

    Article  Google Scholar 

  62. Shallom D, Shoham Y (2003) Microbial hemicellulases. Curr Opin Microbiol 6:219–228

    Article  Google Scholar 

  63. Jorgensen H, Kristensen JB, Felby C (2007) Enzymatic conversion of lignocellulose into fermentable sugars: challenges and opportunities. Biofuels, Bioprod Biorefin 1(2):119–134. doi:10.1002/bbb.4

    Article  Google Scholar 

  64. Varga E, Klinke HB, Réczey K, Thomsen AB (2004) High solid simultaneous saccharification and fermentation of wet oxidized corn stover to ethanol. Biotechnol Bioeng 88:567–574

    Article  Google Scholar 

  65. Tengborg C, Galbe M, Zacchi G (2001) Influence of enzyme loading and physical parameters on the enzymatic hydrolysis of steam-pretreated softwood. Biotechnol Prog 17(1):110–117

    Article  Google Scholar 

  66. Mohagheghi A, Tucker M, Grohmann K, Wyman C (1992) High solids simultaneous saccharifi cation and fermentation of pretreated wheat straw to ethanol. Appl Biochem Biotechnol 33:67–81

    Article  Google Scholar 

  67. Fan ZL, South C, Lyford K, Munsie J, van Walsum P, Lynd LR (2003) Conversion of paper sludge to ethanol in a semicontinuous solids-fed reactor. Bioprocess Biosyst Eng 26:93–101

    Article  Google Scholar 

  68. Verduyn C, Postma E, Scheffers WA, van Dijken JP (1990) Physiology of Saccharomyces cerevisiae in anaerobic glucose-limited chemostat cultures. J Gen Microbiol 136:395–403

    Article  Google Scholar 

  69. Saha BC (2003) Hemicellulose bioconversion. J Ind Microbiol Biotechnol 3:279–291

    Article  Google Scholar 

  70. Hahn-Hägerdal B, Wahlbom CF, Gárdonyi M, van Zyl W, Otero R, Jönsson LJ (2001) Metabolic engineering of Saccharomyces cerevisiae for xylose utilisation. Adv Biochem Eng Biotechnol 73:53–84

    Google Scholar 

  71. Dien BS, Cotta MA, Jeffries TW (2003) Bacteria engineered for fuel ethanol production: current status. Appl Microbiol Biotechnol 63:258–266

    Article  Google Scholar 

  72. Jeffries TW (2006) Engineering yeasts for xylose metabolism. Curr Opin Biotechnol 17:1–7

    Article  Google Scholar 

  73. Becker J, Boles E (2003) A modified Saccharomyces cerevisiae strain that consumes L-arabinose and produces ethanol. Appl Environ Microbiol 69(7):4144–4150

    Article  Google Scholar 

  74. Karhumaa K, Wiedemann B, Hahn-Hagerdal B, Boles E, Gorwa-Grauslund MF (2006) Co-utilization of l-arabinose and d-xylose by laboratory and industrial Saccharomyces cerevisiae strains. Microb Cell Fact 5:18. doi:10.1186/1475-2859-5-18

    Article  Google Scholar 

  75. Hahn-Hägerdal B, Karhumaa K, Fonseca C, Spencer-Martins I, Gorwa-Grauslund MF (2007) Towards industrial pentose-fermenting yeast strains. Appl Microbiol Biotechnol 74:937–953

    Article  Google Scholar 

  76. van Maris AJA, Abbott DA, Bellissimi E, van den Brink J, Kuyper M, Luttik MAH, Wisselink HW, Scheffers WA, van Dijken JP, Pronk JT (2006) Alcoholic fermentation of carbon sources in biomass hydrolysates by Saccharomyces cerevisiae: current status. Antonie Leeuwenhoek 90(4):391–418, Int J Gen Molec Microbiol

    Article  Google Scholar 

  77. Karhumaa K, Hahn-Hägerdal B, Gorwa-Grauslund MF (2005) Investigation of limiting metabolic steps in the utilization of xylose by recombinant Saccharomyces cerevisiae using metabolic engineering. Yeast 22:359–368

    Article  Google Scholar 

  78. Kuyper M, Hartog MMP, Toirkens MJ, Almering MJH, Winkler AA, van Dijken JP, Pronk JT (2005) Metabolic engineering of a xylose-isomerase-expressing Saccharomyces cerevisiae strain for rapid anaerobic xylose fermentation. FEMS Yeast Res 5:399–409

    Article  Google Scholar 

  79. Walfridsson M, Anderlund M, Bao X, Hahn-Hägerdal B (1997) Expression of different levels of enzymes from the Pichia stipitis XYL1 and XYL2 genes in Saccharomyces cerevisiae and its effects on product formation during xylose utilisation. Appl Microbiol Biotechnol 48:218–224

    Article  Google Scholar 

  80. Kötter P, Amore R, Hollenberg CP, Ciriacy M (1990) Isolation and characterization of the Pichia stipitis xylitol dehydrogenase gene, XYL2, and construction of a xylose-utilizing Saccharomyces cerevisiae transformant. Curr Genet 18:493–500

    Article  Google Scholar 

  81. Eliasson A, Christensson C, Wahlbom CF, Hahn-Hägerdal B (2000) Anaerobic xylose fermentation by recombinant Saccharomyces cerevisiae carrying XYL1, XYL2, and XKS1 in mineral medium chemostat cultures. Appl Environ Microbiol 66:3381–3386

    Article  Google Scholar 

  82. Hamacher T, Becker J, Gárdonyi M, Hahn-Hägerdal B, Boles E (2002) Characterization of the xylose-transporting properties of yeast hexose transporters and their influence on xylose utilization. Microbiology 148:2783–2788

    Article  Google Scholar 

  83. Jeffries TW (1983) Utilization of xylose by bacteria, yeast, and fungi. Adv Biochem Eng Biotechnol 27:1–32

    MathSciNet  Google Scholar 

  84. Öhgren K, Bengtsson O, Gorwa-Grauslund MF, Galbe M, Hahn-Hägerdal B, Zacchi G (2006) Simultaneous saccharification and co-fermentation of glucose and xylose in steam-pretreated corn stover at high fiber content with Saccharomyces cerevisiae TMB3400. J Biotechnol 126:488–498

    Article  Google Scholar 

  85. Olofsson K, Rudolf A, Lidén G (2008) Designing simultaneous saccharification and fermentation for improved xylose conversion by a recombinant strain of Saccharomyces cerevisiae. J Biotechnol 134:112–120

    Article  Google Scholar 

  86. Rudolf A, Baudel H, Zacchi G, Hahn-Hägerdal B, Liden G (2008) Simultaneous saccharification and fermentation of steam-pretreated bagasse using Saccharomyces cerevisiae TMB3400 and Pichia stipitis CBS6054. Biotechnol Bioeng 99(4):783–790

    Article  Google Scholar 

  87. Palmqvist E, Hahn-Hagerdal B (2000) Fermentation of lignocellulosic hydrolysates. II: inhibitors and mechanisms of inhibition. Bioresour Technol 74:25–33

    Article  Google Scholar 

  88. Larsson S, Reimann A, Nilvebrant N-O, Jönsson LJ (1999) Comparison of different methods for the detoxification of lignocelluloase hydrolyzates of spruce. Appl Biochem Biotechnol 77–79:91–103

    Article  Google Scholar 

  89. Nilvebrant N-O, Persson P, Reimann A, de Sousa F, Gorton L, Jönsson LJ (2003) Limits for alkaline detoxification of dilute-acid lignocellulose hydrolysates. Appl Biochem Biotechnol 105:615–628

    Article  Google Scholar 

  90. Alkasrawi M, Rudolf A, Liden G, Zacchi G (2006) Influence of strain and cultivation procedure on the performance of simultaneous saccharification and fermentation of steam pretreated spruce. Enzyme Microb Technol 38:279–286

    Article  Google Scholar 

  91. Rudolf A, Alkasrawi M, Zacchi G, Liden G (2005) A comparison between batch and fed-batch simultaneous saccharification and fermentation of steam pretreated spruce. Enzyme Microb Technol 37:195–204

    Article  Google Scholar 

  92. Taherzadeh MJ, Niklasson C, Liden G (2000) On-line control of fed-batch fermentation of dilute-acid hydrolyzates. Biotechnol Bioeng 69:330–33855

    Article  Google Scholar 

  93. Taherzadeh MJ, Gustafsson L, Niklasson C, Liden G (2000) Inhibition effects of furfural on aerobic batch cultivation of Saccharomyces cerevisiae growing on ethanol and/or acetic acid. J Biosci Bioeng 90:374–380

    Article  Google Scholar 

  94. Taherzadeh MJ, Niklasson C, Liden G (1997) Acetic acid – friend or foe in anaerobic batch conversion of glucose to ethanol by Saccharomyces cerevisiae? Chem Eng Sci 15:2653–2659

    Article  Google Scholar 

  95. Palmqvist E, Hahn-Hägerdal B, Galbe M, Zacchi G (1996) The effect of water-soluble inhibitors from steam-pretreated willow on enzymatic hydrolysis and ethanol fermentation. Enzyme Microb Technol 6:470–476

    Article  Google Scholar 

  96. Lu Y, Warner R, Sedlak M, Ho N, Mosier NS (2009) Comparison of glucose/xylose cofermentation of poplar hydrolysates processedby different pretreatment technologies. Biotechnol Prog 25(2):349–356

    Article  Google Scholar 

  97. Brethauer S, Wyman EC (2010) Review – continuous hydrolysis and fermentation for cellulosic ethanol production. Bioresour Technol 101(13):4862–4874

    Article  Google Scholar 

  98. Katzen R, Madson PW, Monceaux DA, Bevernitz K (1999) Lignocellulosic feedstocks for ethanol production: the ultimate renewable energy source. In: Jacquers KA, Lyons TP, Kelsall DR (eds) The alcohol textbook, 3rd edn. Nottingham University Press, Nottingham, pp 107–116

    Google Scholar 

  99. Wingren A, Galbe M, Zacchi G (2003) Techno-economic evaluation of producing ethanol from softwood: Comparison of SSF and SHF and identification of bottlenecks. Biotechnol Prog 19(4):1100–1117

    Google Scholar 

  100. Galbe M, Sassner P, Wingren A, Zacchi G (2007) Process engineering economics of bioethanol production. Adv Biochem Eng Biotechnol 108:303–327

    Google Scholar 

  101. Sassner P, Galbe M, Zacchi G (2008) Techno-economic evaluation of bioethanol production from three different lignocellulosic materials. Biomass Bioenergy 32:422–430

    Article  Google Scholar 

  102. Sassner P (2007) Lignocellulosic ethanol production based on steam pretreatment and SSF. PhD thesis, LUTKDH/(TKKA-1006)/1-88/(2007). Lund University, Sweden

    Google Scholar 

  103. Larsen J, Petersen MO, Thirup L, Li HW, Krogh Iversen F (2008) The IBUS process – lignocellulosic bioethanol close to a commercial reality. Chem Eng Technol 31(5):765–772

    Article  Google Scholar 

  104. Öhgren K, Bura R, Lesnicki G, Saddler J, Zacchi G (2007) A comparison between simultaneous saccharification and fermentation and separate hydrolysis and fermentation using steam-pretreated corn stover. Process Biochem 42:834–839

    Article  Google Scholar 

  105. Söderström J, Galbe M, Zacchi G (2005) Separate versus simultaneous saccharification and fermentation of two-step steam pretreated softwood for ethanol production. J Wood Chem Technol 25(3):187–202

    Article  Google Scholar 

  106. Wingren A, Galbe M, Zacchi G (2003) Techno-economic evaluation of producing ethanol from softwood: comparison of SSF and SHF and identification of bottlenecks. Biotechnol Prog 19(4):1109–1117

    Article  Google Scholar 

  107. Rudolf A, Alkasrawi M, Zacchi G, Lidén G (2005) A comparison between batch and fed-batch simultaneous saccharification and fermentation of steam pretreated spruce. Enzyme Microb Technol 37:195–205

    Article  Google Scholar 

  108. Olofsson K, Bertilsson M, Liden G (2008) A short review on SSF – an interesting process option for ethanol production from lignocellulosic feedstocks. Biotechnol Biofuels 1:7

    Article  Google Scholar 

  109. Lynd LR, van Zyl WH, McBride JE, Laser M (2005) Consolidated bioprocessing of cellulosic biomass: an update. Curr Opin Biotechnol 16(5):577–583

    Article  Google Scholar 

  110. Jørgensen H, Vibe-Pedersen J, Larsen J, Felby C (2007) Liquefaction of lignocellulose at high-solids concentrations. Biotechnol Bioeng 96(5):862–870

    Article  Google Scholar 

  111. Sassner P, Galbe M, Zacchi G (2007) Techno-economic aspects of a wood-to-ethanol process – energy demand and possibilities for integration. Chem Eng Trans 12:447–452

    Google Scholar 

  112. Wingren A, Galbe M, Zacchi G (2008) Energy considerations for a SSF-based softwood ethanol plant. Bioresour Technol 99:2121–2131

    Article  Google Scholar 

  113. Barta Zs, Reczey K, Zacchi G (2010) Techno-economic evaluation of stillage treatment with anaerobic digestion in a softwood-to-ethanol process. Biotechnol Biofuels 3:21. doi:10.1186/1754-6834-3-21

    Article  Google Scholar 

  114. Sassner P, Zacchi G (2008) Integration options for high energy efficiency and improved economics in a wood-to-ethanol process. Biotechnol Biofuels 1:4. doi:10.1186/1754-6834-1-4

    Article  Google Scholar 

  115. Kadam KL, Wooley R, Aden A, Nguyen QA, Yancey MA, Ferraro FM (2000) Softwood forest thinnings as a biomass source for ethanol production: a feasibility study for California. Biotechnol Prog 16:947–957

    Article  Google Scholar 

  116. Erdei B, Barta Zs, Sipo B, Réczey K, Galbe M, Zacchi G (2010) Ethanol production from mixtures of wheat straw and wheat meal. Biotechnol Biofuels 3:16. doi:10.1186/1754-6834-3-16

    Article  Google Scholar 

  117. Bon EPS, Ferrara MA (2007) Bioethanol production via enzymatic hydrolysis of cellulosic biomass. The role of agricultural biotechnologies for production of bioenergy in developing countries – FAO biotechnology and bioenergy seminar 2007. http://www.fao.org/biotech/seminaroct2007.htm

  118. State of São Paulo Law no. 11.241, DE 19/09/2002, Brazil

    Google Scholar 

  119. Nogueira LAH (2008) Co-products of sugarcane bioethanol. In: Sugarcane-based bioethanol: energy for sustainable development. BNDES, Rio de Janeiro, pp 99–118

    Google Scholar 

  120. Lora ES, Andrade RV (2009) Biomass as energy source in Brazil. Renewable Sustainable Energy Rev 13:777–788

    Article  Google Scholar 

  121. Goldemberg J (2008) The Brazilian biofuel industry. Biotechnol Biofuels 1:6. doi:10.1186/1754-6834-1-6

    Article  Google Scholar 

  122. Bacovsky, Dallos, Wörgetter Status of 2nd generation biofuels demonstration facilities, T39-P1b, 27 July 2010. http://www.ascension-publishing.com/BIZ/IEATask39-0610.pdf

Books and Reviews

  • Barbosa Cortez LA (2010) Sugarcane bioethanol – R&D for productivity and sustainability (2010). Editora Edgard Blucher, São Paulo

    Google Scholar 

  • Coombs J, Grassi G (1992) Cellulose hydrolysis and fermentation. CPL Press, Berkshire

    Google Scholar 

  • Jacques KA, Lyons TP, Kelsall DR (2003) The alcohol textbook – a reference for the beverage, fuel and industrial alcohol industries, 4th edn. Nottingham University Press, Nottingham

    Google Scholar 

  • Olsson LB (2007) Advances in biochemical engineering biotechnology, vol 108. Springer, Berlin

    Google Scholar 

  • Saddler J (1993) Bioconversion of forest and agricultural residues. CAB International, Wallingford

    Google Scholar 

  • Wyman CE (1996) Handbook on bioethanol: production and utilization. Taylor & Francis, Washington, DC

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guido Zacchi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this entry

Cite this entry

Galbe, M., Zacchi, G. (2013). Bioethanol from Celluloses . In: Kaltschmitt, M., Themelis, N.J., Bronicki, L.Y., Söder, L., Vega, L.A. (eds) Renewable Energy Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5820-3_521

Download citation

Publish with us

Policies and ethics