Skip to main content

Biomass to Liquid (BtL) , Concepts and Their Assessment

  • Reference work entry
  • First Online:
Renewable Energy Systems

Definition of the Subject

To meet future policy and technical targets, biofuels of the next generation need to be developed in parallel to the existing biofuel generation. However, there is no silver bullet yet that of the various discussed options for next generation biofuels (e.g., bioethanol, synthetic biofuels, biohydrogen based on lignocelluloses, biomethane) will become widely accepted within the future transportation sector. BtL fuels (biomass to liquid) are one option of future biofuels that has center stage of discussion due to favorable fuel properties. Therefore different concepts for BtL provision have been analyzed and compared by technical, economic, and environmental criteria. This is done to perform a consistent comparison of BtL concepts being currently under development (e.g., [1, 2]).

Introduction

Despite national trends due to a strong increase of mobility of goods and persons, the energy demand for transportation purpose will increase significantly in Europe,...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 849.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ADP:

Abiotic depletion potential

AP:

Acidification potential

bf:

Biomass feedstock

BtL:

Biomass to liquid

CAPEX:

Capital expenditures

CED:

Cumulative energy demand

CH4:

Methane

CHP-F:

Combined heat, power, and fuel generation

CML:

Centrum voor Milieukunde Leiden

CO:

Carbon (mono-)oxide

CO2:

Carbon dioxide

CtL:

Coal to liquid

DE:

Diesel equivalent

DME:

Dimethylether

EP:

Eutrophication potential

eq:

Equivalent

EU:

European Union

€:

Euro

FOW:

Forest wood

FT:

Fischer–Tropsch

GtL:

Gas to liquid

GWP:

Global warming potential

H2:

Hydrogen

LCA:

Life cycle assessment

LCI:

Life cycle inventory analysis

LCIA:

Life cycle impact assessment

MeOH:

Methanol

MF:

Maximum fuel

MISC:

Miscanthus

MJ:

MEGA Joule

NMVOC:

Non-methane volatile organic compounds

OPEX:

Operational expenditure

P:

Power

pkm:

Passenger kilometer

POCP:

Photochemical oxidation

R&D&D:

Research and development and demonstration

SNG:

Synthetic natural gas

SP:

Starting point

SRC:

Short-rotation coppice

SS:

Self-sufficient

STR:

Straw

TCI:

Total capital investment

ZnO:

Zinc oxide

η:

Efficiency

Bibliography

  1. Vogel A, Müller-Langer F, Kaltschmitt M (2008) Analysis and evaluation of technical and economic potentials of BtL-fuels. Chem Eng Technol 31(5):755–764

    Article  Google Scholar 

  2. Jungbluth N, Frischknecht R, Tuchschmid M (2008) Life cycle assessment of BTL-fuels, conversion concepts and comparison with fossil fuels. In: 16 European biomass conference + exhibition, Valencia, 2–6 June 2008

    Google Scholar 

  3. International Energy Agency (2007) World energy outlook 2007. International Energy Agency, Paris. ISBN 978-92-64-02730-5

    Google Scholar 

  4. Vogel A, Thrän D, Muth J, Beiermann D, Zuberbühler U, Hervouet V, Busch O, Biollaz S (2008) Comparative assessment of different production processes. Scientific report WP5.4. Technical Assessment, SES6-CT-2003-502705 RENEW – renewable fuels for advanced powertrains

    Google Scholar 

  5. Boerrigter H, Van der Drift A (2004) Biosyngas – description of R&D trajectory necessary to reach large-scale implementation of renewable syngas from biomass. Energy research Centre of the Netherlands (ECN), Petten

    Google Scholar 

  6. Henrich E et al (2005) Gaserzeugung aus Biomasse. Final report, Forschungszentrum Karlsruhe

    Google Scholar 

  7. Kaltschmitt M, Hartmann H, Hofbauer H (2009) Energie aus Biomasse. Grundlagen, Techniken und Verfahren. Springer, Berlin

    Book  Google Scholar 

  8. Knoef H (2005) Handbook biomass gasification. BTG Biomass Technology Group, Enschede

    Google Scholar 

  9. Rudloff M (2004) Presentation at the congress, Synthetische Biokraftstoffe – Techniken, Potenziale, Perspektiven. CHOREN Industries, Wolfsburg

    Google Scholar 

  10. Zanzi R (2006) Torrefied wood an alternative to charcoal for reducing deforestation. Royal Institute of Technology, Department of Chemical Engineering and Technology, Stockholm

    Google Scholar 

  11. Boerrigter H et al (2003) Production of FT transportation fuels from biomass; technical options, process analysis and optimisation and development potentials. Energy 29:1743–1771, Utrecht

    Google Scholar 

  12. Cheng WH, Kung HH (1994) Methanol production and use. Marcel Decker, New York

    Google Scholar 

  13. Ekbom T, Lindblom M, Berglin N, Ahlvik P (2003) Technical and commercial feasibility study of black liquor gasification with methanol/DME production as motor fuels for automotive uses – BLGMF. Nykomb Synergetics AB, Chemrec, Volvo, Ecotraffic, OKQ8, STFi; Methanex, Final Report, Altener Programme

    Google Scholar 

  14. Faaij A, Hamelinck C (2001) Future prospects for production of methanol and hydrogen from biomass. Utrecht

    Google Scholar 

  15. Hamelinck C (2004) Outlook for advanced biofuels. PhD thesis, University Utrecht

    Google Scholar 

  16. Hoehlein B et al (2003) Methanol als Energieträger. Forschungszentrum Jülich GmbH, Institut für Werkstoffe und Verfahren der Energietechnik (IWV), Schriften des Forschungszentrums Jülich Reihe Energietechnik Band 28, ISBN 3-89336-338-6, Jülich

    Google Scholar 

  17. Saller G (1999) Technisch-wirtschaftliche Bewertung der Methanolerzeugung aus Biomasse mit Hilfe von Prozessmodellen. Universität Siegen, Dissertation

    Google Scholar 

  18. Tijmensen M, Faaij A, Hamelinck C, Van Hardeveld M (2002) Exploration of the possibilities for production of Fischer-Tropsch liquids and power via biomass gasification. Biomass and Bioenergy 23:129–152, Elsevier, Amsterdam

    Article  Google Scholar 

  19. Deutsche Energie-Agentur GmbH (2006) Biomass to liquid – BtL realisierungsstudie. Zusammenfassung, Berlin

    Google Scholar 

  20. Henrich E (2007) Economic aspects of biosynfuel production via bioslurry gasification. In: Proceedings of the 15th European biomass conference, Paris

    Google Scholar 

  21. Rudloff M (2007) First commercial BTL production facility – the Choren ß-Plant Freiberg. In: Proceedings of the 15th European biomass conference, Paris

    Google Scholar 

  22. Nitsche R (2007) BTL- biomass to liquid (Fischer Tropsch process at the biomass gasifier in Güssing). In: Proceedings of the 15th European biomass conference, Paris

    Google Scholar 

  23. Gebhard R (2006) Black Liquor Gasification – large scale production of green transportation fuels, presentation. Energy Technology Centre, Sweden

    Google Scholar 

  24. VDI 3780 (2000) Technikbewertung, Begriffe und Grundlagen. Verein Deutscher Ingenieure, Düsseldorf 2000. Beuth Verlag GmbH, Berlin

    Google Scholar 

  25. Syncom (2008) Renewable fuels for advanced power trains, final report of the integrated project RENEW, contract no: SES6-CT-2003-502705

    Google Scholar 

  26. VDI 6025 (1996) Betriebswirtschaftliche Berechnungen für Investitionsgüter und Anlagen. VDI-Gesellschaft Technische Gebäudeausrüstung. Beuth Verlag GmbH, Berlin

    Google Scholar 

  27. Mueller-Langer F, Vogel A, Brauer S (2008) Overall costs. SES6-CT-2003-502705 Renewable fuels for advanced powertrains. WP5.3 Deliverable D 5.3.8 IEE Germany

    Google Scholar 

  28. Mueller-Langer F, Vogel A, Thrän D (2007) Suitable logistic concepts for biomass provision to BtL plants. In: 2nd generation biomass-to-liquids biofuels – technology & commercialisation outlook, BTLtec, Vienna

    Google Scholar 

  29. Mueller-Langer F, Thrän D, Gańko E, Jaworski Ł (2007) Biomass provision costs – Final report. SES6-CT-2003-502705 renewable fuels for advanced powertrains. WP5.3 Deliverable D 5.3.6 EC BREC Poland, IEE Germany

    Google Scholar 

  30. Chiesa P (2003) Co-production of hydrogen, electricity and CO2 from coal using commercially-ready technology. In: Second annual conference on carbon sequestration, Washington

    Google Scholar 

  31. Ekbom T, Berglin N, Lögdberg S (2005) Black liquor gasification with motor fuel production – BLGMF II, A techno-economic feasibility study on catalytic Fischer-Tropsch synthesis for synthetic diesel production in comparison with methanol and DME as transport fuels. Nykomb Synergetics AB, STFi-Packforsk, KTH Royal Institute of Technology, Statoil, Structor Hulthén Stråth, Final Report, Sweden

    Google Scholar 

  32. Munson C, Adams J (2003) Cost allocation targets for vision 21 plant modules, Presentation, San Francisco

    Google Scholar 

  33. Swedish National Energy Administration (2002) The Bio-DME-Project Phase 1. Non-confidential version, Report, Stockholm

    Google Scholar 

  34. Mueller-Langer F, Oehmichen K (2009) Economic and environmental aspects of Bio-SNG compared with other biofuels. In: Bio-SNG ’09 – synthetic natural gas from biomass; international conference on advanced biomass-to-SNG technologies and their market implementation, Zürich

    Google Scholar 

  35. Huerthig GmbH (2007) Price index for chemical plants and machinery. published quarterly in journal “Chemie Technik”. Hüthig Fachverlag, Heidelberg

    Google Scholar 

  36. Doornbosch R, Steenblik R (2007) Biofuels: Is the cure worse than the disease?. Round table on sustainable development, Organisation for Economic Co-operation and Development, OECD, SG/SD/RT(2007)3, Paris

    Google Scholar 

  37. Gangl C (2004) Ethanolerzeugung aus stärkehaltigen Rohstoffen zur Treibstoffzwecke. Wien

    Google Scholar 

  38. Kavalov B, Peteves SD (2005) Status and perspectives of biomass-to-liquid fuels in the European Commission. European Commission, Directorate General Joint Research Centre (DG JRC), Institut for Energy, Petten

    Google Scholar 

  39. Quirin M, Gärtner SO, Pehnt M, Reinhardt GA (2004) CO2-Studie – CO2-neutrale Wege zukünftiger Mobilität durch Biokraftstoffe: Eine Bestandsaufnahme. Institut für Energie- und Umweltforschung Heidelberg GmbH (IFEU), Studie im Auftrag der Forschungsvereinigung Verbrennungskraftmaschinen (FVV), Heft 789, Frankfurt am Main

    Google Scholar 

  40. Schmitz N, Henke J, Keppler G (2006) Biokraftstoffe eine vergleichende Analyse. Fachagentur Nachwachsende Rohstoffe e. V. (Hrsg.) mit finanzieller Förderung des Bundesministeriums für Ernährung, Landwirtschaft und Verbraucherschutz, Gülzow

    Google Scholar 

  41. Thuijl EV, Roos CJ, Beurskens LWM (2003) An overview of biofuel technologies, markets and policies in Europe. Energy Research Centre of the Netherlands, Petten

    Google Scholar 

  42. Wakker A et al (2006) Biofuel and bioenergy implementation scenarios. Final report of VIEWLS WP5, modelling studies. Senter Novem, Petten

    Google Scholar 

  43. International Organization for Standardization (2006) Environmental management – Life cycle assessment – Principles and framework, 2nd edn. ISO 14040:2006, 2006-06: Geneva

    Google Scholar 

  44. Jungbluth N, Frischknecht R, Faist Emmenegger M, Tuchschmid M (2007) Life cycle assessment of BTL-fuel production: goal and scope definition (revised). RENEW – renewable fuels for advanced powertrains. Sixth framework programme: sustainable energy systems, deliverable: D 5.2.2. ESU-services, Uster. Retrieved from www.esu-services.ch

  45. ecoinvent Centre (2007) ecoinvent data v2.01, ecoinvent reports No. 1–25. 2007, CD-ROM, Swiss Centre for Life Cycle Inventories, Duebendorf. Retrieved from www.ecoinvent.org

  46. Jungbluth N, Frischknecht R, Faist Emmenegger M, Steiner R et al (2007) Life cycle assessment of BTL-fuel production: inventory analysis. RENEW – renewable fuels for advanced powertrains. Sixth framework programme: sustainable energy systems, deliverable: D 5.2.7. ESU-services, Uster. Retrieved from www.esu-services.ch/renew.htm

  47. Jungbluth N, Schmutz S (2007) Inventory dataset: EcoSpold/Gabi/Excel. RENEW – renewable fuels for advanced powertrains. Sixth framework programme: sustainable energy systems, deliverable: D 5.2.9. ESU-services, Uster. Retrieved from www.esu-services.ch/renew.htm

  48. Jungbluth N, Frischknecht R, Faist Emmenegger M, Steiner R et al (2007) Life cycle assessment of BTL-fuel production: life cycle impact assessment and interpretation. RENEW – renewable fuels for advanced powertrains. Sixth framework programme: sustainable energy systems, deliverable: D 5.2.10. ESU-services, Uster. Retrieved from www.esu-services.ch/renew.htm

  49. Guinée JB (final editor), Gorrée M, Heijungs R, Huppes G et al (2001) Life cycle assessment; an operational guide to the ISO standards, parts 1 and 2. Ministry of Housing, Spatial Planning and Environment (VROM)/Centre of Environmental Science (CML), Den Haag/Leiden

    Google Scholar 

  50. Frischknecht R, Jungbluth N, Althaus H-J, Bauer C et al (2007) Implementation of life cycle impact assessment methods. CD-ROM, ecoinvent report No. 3, v2.0, Swiss Centre for Life Cycle Inventories, Dübendorfz Retrieved from www.ecoinvent.org

  51. Jungbluth N, Büsser S, Frischknecht R, Tuchschmid M (2008) Ökobilanz von Energieprodukten: life cycle assessment of biomass-to-liquid fuels. programm biomasse, 280006, ESU-services Ltd. im Auftrag des Bundesamt für Energie, Bundesamt für Umwelt und Bundesamt für Landwirtschaft, Berne

    Google Scholar 

  52. Jungbluth N, Chudacoff M, Dauriat A, Dinkel F et al (2007) Life cycle inventories of bioenergy. Ecoinvent report No. 17, v2.0. ESU-services, Uster. Retrieved from www.ecoinvent.org

  53. Zah R, Böni H, Gauch M, Hischier R, et al (2007) Ökobilanz von Energieprodukten: Ökologische Bewertung von Biotreibstoffen. Schlussbericht, Abteilung Technologie und Gesellschaft, Empa im Auftrag des Bundesamtes für Energie, des Bundesamtes für Umwelt und des Bundesamtes für Landwirtschaft, Bern

    Google Scholar 

  54. Frischknecht R, Steiner R, Jungbluth N (2009) The Ecological Scarcity Method – Eco-Factors 2006: A method for impact assessment in LCA. Federal Office for the Environment FOEN, Zürich und Bern

    Google Scholar 

  55. Goedkoop M, Spriensma R (2000) The Eco-indicator 99: A damage oriented method for life cycle impact assessment. Methodology Report, 2nd rev edn. PRé Consultants, Amersfoort

    Google Scholar 

  56. Frischknecht R, Jungbluth N, Althaus HJ, Bauer C et al (2007) Implementation of life cycle impact assessment methods. CD-ROM, ecoinvent report No. 3, v2.0, Swiss Centre for Life Cycle Inventories, Dübendorf. Retrieved from www.ecoinvent.org

  57. PRé Consultants (2007) SimaPro 7.1. Amersfoort. www.simapro.com

  58. Jungbluth N, Frischknecht R, Faist Emmenegger M, Steiner R et al (2007) Life cycle assessment of BTL-fuel production: Final Report. 2007, RENEW – renewable fuels for advanced powertrains. Sixth framework programme: sustainable energy systems, deliverable: D 5.2.15. ESU-services, Uster. Retrieved from www.esu-services.ch/renew.htm

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franziska Mueller-Langer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this entry

Cite this entry

Mueller-Langer, F., Jungbluth, N. (2013). Biomass to Liquid (BtL) , Concepts and Their Assessment. In: Kaltschmitt, M., Themelis, N.J., Bronicki, L.Y., Söder, L., Vega, L.A. (eds) Renewable Energy Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5820-3_433

Download citation

Publish with us

Policies and ethics