Renewable Energy Systems

2013 Edition
| Editors: Martin Kaltschmitt, Nickolas J. Themelis, Lucien Y. Bronicki, Lennart Söder, Luis A. Vega

Waste-to-Energy: Decreasing the Entropy of Solid Wastes and Increasing Metal Recovery

Reference work entry
DOI: https://doi.org/10.1007/978-1-4614-5820-3_418

Definition of the Subject and Its Importance

The turnover of materials used in a national economy has been described as the consumption of resources (low-entropy materials ) that are used and transformed into wastes (high entropy materials ); therefore, the economy is viewed as an entropy-producing process [1]. In a recycling economy, entropy generation must be kept low and waste management should transform high-entropy wastes into low-entropy recycled products that can reduce the use of primary resources. Entropy reduction is achieved by the concentrating of materials. Evaluation of the materials balances, by means of statistical entropy analysis, within state-of-the-art incinerators shows that waste-to-energy is a major contributor to a sustainable materials management. It is shown that waste incineration results in significant concentrating of several substances.

Introduction: Material Balances and Entropy Evaluation

Stumm and Davis [ 2] described the life cycle of copper...
This is a preview of subscription content, log in to check access

Bibliography

Primary Literature

  1. 1.
    Georgescu-Roegen N (1971) The entropy law and economic process. Harvard University Press, Cambridge, MACrossRefGoogle Scholar
  2. 2.
    Stumm W, Davis J (1974) Kann recycling die umweltbeeinträchtigung vermindern? In: Gottlieb Duttweiler-Institut für wirtschaftliche und soziale studien, Recycling: Lösung der Umweltkrise? Ex Libris, Zurich, pp 29–41Google Scholar
  3. 3.
    Rechberger H, Graedel TE (2002) The European copper cycle: statistical entropy analysis. Ecol Econ 42(1–2):59–72CrossRefGoogle Scholar
  4. 4.
    Brunner PH, Morf LS, Rechberger H (2004) Thermal waste treatment – a necessary element for sustainable waste management. In: Twardowska I, Allen HE, Kettrup AAF, Lacy WJ (eds) Solid waste: assessment, monitoring and remediation. Elsevier, Kidlington, Oxford, pp 783–806CrossRefGoogle Scholar
  5. 5.
    Directive 2000/76/EC of the European Parliament and of the Council of 4 December 2000 on the incineration of wasteGoogle Scholar
  6. 6.
    Skutan S, Rechberger H (2007) Bestimmung von stoffbilanzen und transferkoeffizienten für die linie II der MVA Wels. Final Report, Institute for Water Quality, Resource and Waste Management, Vienna University of Technology, unpublishedGoogle Scholar
  7. 7.
    Rechberger H (1999) Entwicklung einer methode zur bewertung von stoffbilanzen in der abfallwirtschaft. PhD-Thesis, Wiener Mitteilungen Band 158, Institute for Water Quality, Resource and Waste Management, Vienna University of TechnologyGoogle Scholar
  8. 8.
    Rechberger H, Brunner PH (2002) A new, entropy based method to support waste and resource management decisions. Environ Sci Technol 34(4):809–816CrossRefGoogle Scholar
  9. 9.
    Mitterbauer G, Skutan S, Rechberger H (2009) Charakterisierung der rostasche der MVA Dürnrohr im hinblick auf die rückgewinnung von metallen. Institute for Water Quality, Resource and Waste Management, Vienna University of Technology, unpublishedGoogle Scholar
  10. 10.
    Zeltner C, Lichtensteiger T (2002) Thermal waste treatment and resource management – a petrologic approach to control the genesis of materials in smelting processes. Environ Eng Policy 3:75–86CrossRefGoogle Scholar

Books and Reviews

  1. Brunner PH, Rechberger H (2004) Practical handbook of material flow analysis. Lewis Publishers, New YorkGoogle Scholar
  2. Kaufman S, Krishnan N, Known E, Castaldi M, Themelis N, Rechberger H (2008) Examination of the fate of carbon in waste management systems through statistical entropy and life cycle analysis. Environ Sci Technol 42(22):8558–8563CrossRefGoogle Scholar
  3. Rechberger H (2001) An entropy based method to evaluate hazardous inorganic substance balances of waste treatment systems. Waste Manage Res 19:186–192CrossRefGoogle Scholar
  4. Rechberger H (2001) The use of the statistical entropy to evaluate the utilisation of incinerator ashes for the production of cement. Waste Manage Res 19:262–268CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Institute of Water Quality, Resource and Waste ManagementVienna University of TechnologyViennaAustria