Skip to main content

Martin Waste-to-Energy Technology

  • Reference work entry
  • First Online:
Renewable Energy Systems

Definition of the Subject

Waste-to-Energy (WTE) technologies have been confronted with numerous and changing challenges over the last few decades. Various important factors have to be considered, not only the reduction of waste volume and mass and the destruction and capture of pollutants. Environmental concerns have demanded that flue gases are no longer a significant source of emissions, and that the waste, and also residues remaining after thermal treatment, are to be transformed into reusable products. Thermal treatment of waste using a grate-based system has gained acceptance as the preferred system for sustainable treatment of waste worldwide. The reason for this is that the energy content of the waste is utilized and that quality products and residues are produced. Nevertheless grate-based processes must also keep pace with international requirements and proposed alternative thermal treatment technologies by further innovative...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 849.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Reverse-acting grate:

Grate system, inclined at an angle of 26°, with rows of grate bars moving up and down against the downward flow of solids.

Horizontal grate:

Horizontal grate system with rows of grate bars moving in opposite directions alternated with stationary rows of grate bars.

SYNCOM:

SYNthetic COMbustion using oxygen-enriched underfire air on a reverse-acting grate.

IR camera:

Infrared camera recording the surface temperature across the width and the length of the bed on the grate for selected bandwidths from the roof of the combustion chamber.

MICC:

MARTIN Infrared Combustion Control for reverse-acting grate systems including fuzzy logic control, IR camera, operating mode concept, and operational data logging/visualization.

ACC:

Advanced Combustion Control for horizontal grate systems combining existing standard measurement information to generate the control loops.

LN:

Low NO x technology for significant reduction of NO x concentration downstream of the combustion system by primary measures.

SNCR:

Selective Non-Catalytic Reduction of NO x by injection of a reagent into the combustion chamber as a secondary measure without use of a catalytic converter.

T3:

Time–Temperature–Turbulence: concept ensuring an efficient post-combustion with good gas burnout.

Bibliography

Primary Literature

  1. MARTIN GmbH für Umwelt- und Energietechnik (2011) http://www.martingmbh.de

  2. Koralewska R (2006) MARTIN Reverse-acting grate system – The challenge of high heating value fuels. In: Proceedings of the 14th NAWTEC, Tampa, 1–3 May 2006

    Google Scholar 

  3. Gohlke O, Busch M (2001) Reduction of combustion by-products in WTE plants: O2 enrichment of underfire air in the Martin Syncom process. Chemosphere 42:545–550

    Article  Google Scholar 

  4. Gohlke O, Koralewska R, Zellinger G, Takuma M, Kuranishi M, Yanagisawa Y (2006) Alternatives to ash melting and gasification. In: Proceedings of the 4th i-CIPEC, Kyoto, Japan, 26–29 Sept 2006

    Google Scholar 

  5. Gohlke O, Martin J (2007) Drivers for innovation in Waste-to-Energy technology. Waste Manage Res 25:214–219

    Article  Google Scholar 

  6. Gleis M (2009) Reliability of new technologies of thermal waste treatment. In: 10th Assises des déchets, Atlantia la Baule, France, 21–22 Oct 2009

    Google Scholar 

  7. Gleis M (2010) Ungläubiges Kopfschütteln-Pyrolyse das einst viel gepriesene Abfallbehandlungsverfahren hat sich in Europa nicht durchgesetzt. Steht ihm nun eine Renaissance bevor? RECYCLING Magazine 07, pp 30–31

    Google Scholar 

  8. Tadishi O, Hiroyuki H, Kazuaki S (2006) Operation data of MSW gasification and melting plant. In: Proceedings of the 4th i-CIPEC, Kyoto, Japan, 26–29 Sept 2006

    Google Scholar 

  9. Whiting K, Schwager J (2006) Why are novel technologies, such as gasification, for MSW processing struggling to make an impact in Europe? In: Proceedings of the 4th i-CIPEC, Kyoto, Japan, 26–29 Sept 2006

    Google Scholar 

  10. Vehlow J (2009) Abfallverbrennung in Deutschland. Müllhandbuch digital, ESV Erich Schmidt Verlag, MuA Lfg. 2/09

    Google Scholar 

  11. International Energy Agency IEA (2010) IEA Biomass Agreement. Task X, Sub-task 6-Gasification of waste. http://www.ieabioenergy.com

  12. Beckmann M, Scholz R, Wiese C, Davidovic M (1997) Optimization of gasification of waste materials in grate systems. In: International conference on incineration & thermal treatment technologies, San Francisco-Oakland Bay, 12–16 May 1997

    Google Scholar 

  13. Davidovic M (2007) Gasification and NOx-reduction with a reverse-acting grate and a multistaged postcombustion chamber. Presentation at Clausthaler Umwelttechnik-Institut GmbH/CUTEC, Clausthal-Zellerfeld, Germany

    Google Scholar 

  14. Schreiner R, Jansen A (1997) Infrared cameras guide combustion control. Mod Power Syst 17(9):45–49

    Google Scholar 

  15. Meile E, Schreiner R (2002) Gezielte Prozessbeeinflussung durch Aufschalten einer Infrarotkamera am Beispiel der MVA Winterthur. Entsorgungspraxis 5:26–30

    Google Scholar 

  16. Zipser S, Gommlich A, Matthes J, Keller H, Fouda Ch, Schreiner R (2004) On the optimization of industrial combustion processes using infrared thermography. In: Proceedings of the 23rd IASTED international conference on modeling, identification and control, Grindelwald, pp 386–391

    Google Scholar 

  17. Keller H, Matthes J, Zipser S, Schreiner R, Gohlke O, Horn J, Schönecker H (2007) Kamerabasierte Feuerungsregelung bei stark schwankender Brennstoffzusammensetzung. VGB Powertech 3:85–92

    Google Scholar 

  18. Gohlke O (2009) Efficiency of energy recovery from municipal solid waste and the resultant effect on the GHG balance. Waste Manage Res 27:894–906

    Article  Google Scholar 

  19. BREF of waste incineration (2005) Integrated pollution prevention and control. Reference document on the best available techniques for waste incineration (BREF), IPPC Bureau. http://eippcb.jrc.es

  20. Gohlke O, Seitz A, Spliethoff H (2007) Innovative approaches to increase efficiency in EfW plants – Potential and limitations. ISWA, Amsterdam

    Google Scholar 

  21. Murer MJ, Spliethoff H, van Berlo MAJ, de Waal CMW, Gohlke O (2009) Comparison of energy efficiency indicators for EfW plants. Proceedings of the Sardinia 2009 symposium, Sardinia, Italy

    Google Scholar 

  22. Mennessier A (2008) Study of an innovative process for NOx reduction in an energy-from-waste plant, BSc Technische Universität München, München

    Google Scholar 

  23. ANSYS Inc (2010) ANSYS FLUENT 12.0 Documentation

    Google Scholar 

  24. Wolf Ch (2005) Erstellung eines Modells der Verbrennung von Abfall auf Rostsystemen unter besonderer Berücksichtigung der Vermischung – Ein Beitrag zur Simulation von Abfallverbrennungsanlagen. Dissertation, Universität Duisburg-Essen, Duisburg

    Google Scholar 

  25. Martin U (2010) Beschreibung der Brennstoffumsetzung im Brennbett von Rostfeuerungen. Technische Universität München, München

    Google Scholar 

  26. Koralewska R (2005) Industrial-scale validation of a CFD simulation in conjunction with a fuel-bed model. Presentation at waste-to-energy research and technology council, Columbia University, New York

    Google Scholar 

  27. Koralewska R, Wolf Ch (2005) Industrial-scale validation of a CFD model in conjunction with a fuel-bed model for the thermal treatment of waste in grate-based combustion plants. VDI-Berichte 1888, 22. Deutscher Flammentag, VDI-Verlag, Düsseldorf, pp 613–619

    Google Scholar 

  28. Rossignoli P (2010) High-dust selective catalytic NO x reduction at WTE plant in Brescia. In: Proceedings of the 2nd international conference on biomass and waste combustion, Oslo, Norway, 16–17 Feb 2010

    Google Scholar 

  29. Gohlke O, Busch M, Horn J, Takuma M, Kuranishi M, Yanagisawa Y (2003) New grate-based Waste-to-Energy system producing an inert ash granulate. Waste Management World May–June, pp 37–46

    Google Scholar 

  30. Martin J, Gohlke O, Tabaries F, Praud A, Yanagisawa Y, Takuma M (2005) Defining inert – a technological solution to minimize ecotoxicity. Waste Management World Sept/Oct, pp 70–73

    Google Scholar 

  31. Koralewska R (2009) SYNCOM-Plus: An optimized residue treatment process. In: Proceedings of the 17th NAWTEC, Chantilly, 18–20 May 2009

    Google Scholar 

  32. Schlumberger S (2010) Neue Technologien und Möglichkeiten der Behandlung von Rauchgasreinigungsrückständen im Sinne eines nachhaltigen Ressourcenmanagements. In: Proceedings of Bundesamt für Umwelt BAFU: Verbrennungsrückstände in der Schweiz, Bern

    Google Scholar 

  33. BSH Umweltservice AG (2011) http://www.bsh.ch

  34. Schlumberger S (2005) Entwicklung und Optimierung eines Verfahrens zur selektiven Zinkrückgewinnung aus sauren Ascheextrakten der thermischen Abfallentsorgung. Dissertation, Technische Universität München, München

    Google Scholar 

  35. Fleck E (2006) A long-time flame: Waste-to-energy still goes strong in Europe. Waste Management World July–Aug, pp 107–116

    Google Scholar 

  36. Martin J (2010) Der Anlagenbau für Abfallverbrennungsanlagen – Strukturen und Märkte im Licht der Globalisierung. In: Thomé-Kozmiensky KJ, Versteyl A (eds) Planung und Umweltrecht, Band 4. TK, Neuruppin, Germany, pp 41–56

    Google Scholar 

Books and Reviews

  • Chandler AJ, Eighmy TT, Hjelmar O, Vehlow J et al (1997) Municipal solid waste incinerator residues. Elsevier, Amsterdam

    Google Scholar 

  • Ludwig CB et al (1973) Handbook of infrared radiation from combustion gases. NASA SP-3080, Washington, DC

    Google Scholar 

  • Ortiz de Urbina G, Goumans JJJM (2003) Proceedings of the 5th International Conference on the environmental and technical implications of construction with alternative materials. WASCON, San Sebastian, Spain, 4–6 June 2003

    Google Scholar 

  • Spliethoff H (2009) Power generation from solid fuels. Springer, Berlin

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes J. E. Martin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this entry

Cite this entry

Martin, J.J.E., Koralewska, R. (2013). Martin Waste-to-Energy Technology. In: Kaltschmitt, M., Themelis, N.J., Bronicki, L.Y., Söder, L., Vega, L.A. (eds) Renewable Energy Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5820-3_397

Download citation

Publish with us

Policies and ethics