Skip to main content

Biosynthetic Natural Gas

  • Reference work entry
  • First Online:
Renewable Energy Systems

Definition of the Subject

Since the discussion on climate protection started and numerous countries declared defined goals for the use of renewable sources of energy in the heat, electricity as well as in the transportation sector, the request to develop promising and sustainable nonfossil energy pathways gain more and more importance on the political agenda. Under the various renewable sources of energy biomass and especially solid biofuels contribute already significantly within the global energy system mainly due to the easy availability of solid biomass and the ability to cover the given demand anytime (e.g., application for cooking purposes in developing countries, provision of heat in countries with a cold season). Beside these established pathways, new routes for an efficient and sustainable biomass use are under development. One promising example of such a new provision chain is the conversion of solid biofuels via gasification and subsequent methanation into Biosynthetic...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 849.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Biomass gasification:

Thermochemical conversion process, where the gasification media (pretreated solid fuel) is converted into a gaseous fuel (called raw gas).

Bio-SNG:

Biosynthetic Natural Gas is a gaseous biofuel provided via thermochemical conversion including the steps biomass gasification and subsequent methanation.

Methanation:

Methanation is a catalyst-based synthesis with the aim to provide methane from a syngas. Therefore, the gas components hydrogen and carbon monoxide occurring within the syngas are converted to methane and water-steam.

Tri-generation:

Technology for the parallel production of the energy carrier heat, electricity, and fuel (e.g., conversion of biomass into heat, electricity, and Bio-SNG) with varying shares according to the given demand.

Bibliography

  1. International Energy Agency (2008) World energy outlook, Paris

    Google Scholar 

  2. Di Pascoli S, Femia A, Luzzati T (2001) Natural gas, cars and the environment A (relatively) ‘clean’ and cheap fuel looking for users. Ecol Econ 38:179–189

    Google Scholar 

  3. Mozaffarian M, Zwart RWW, Boerrigter H, Deurwaarder EP, Kersten SRA (2004) “Green Gas” as SNG (synthetic natural gas) a renewable fuel with conventional quality. In: Contribution to the science in thermal and chemical biomass conversion conference, Victoria, Vancouver Island, BC, Canada, 30 Aug – 2 Sep 2004

    Google Scholar 

  4. Seiffert M, Kaltschmitt M, Hofbauer M, Müller-Langer F (2009) Demonstration of the production and utilization of synthetic natural gas from solid biofuels presentation of the European project “Bio-SNG”. International conference on polygerneration strategies, Vienna, 2009

    Google Scholar 

  5. Biollaz S (2009) The SNG technology platform in Güssing, A. Status report of Bio-SNG project, Villigen

    Google Scholar 

  6. European Committee for Standardization (2005) Solid biofuels – fuel specification and classes CEN/TS 14961. CEN, UK

    Google Scholar 

  7. Austrian Standard Institute (2003) ÖNORM M 7133 – Hackgut für energetische Zwecke - Anforderungen und Prüfbestimmungen

    Google Scholar 

  8. Seiffert M, Pätz C, Müller-Langer F (2009) Economic-ecological optimisation of biomass logistics for Bio-SNG conversion plants. In: 17th European biomass conference and exhibition, Hamburg, 2009

    Google Scholar 

  9. Bolhàr-Nordenkampf M, Hofbauer H (2004) Biomass gasification combined cycle thermodynamic optimisation using integrated drying. In: Proceedings of ASME Turbo Expo 2004: power for land, sea and air, Vienna, 14–17 June 2004

    Google Scholar 

  10. Knoef HAM (2005) Handbook biomass gasification, 1st edn. BTG biomass technology group BV, Enschede

    Google Scholar 

  11. Kaltschmitt M, Hartmann H, Hofbauer H (2009) Energie aus Biomasse – Grundlagen, Techniken und Verfahren, 2 Aufl. Springer, Berlin

    Google Scholar 

  12. Prins MJ (2005) Thermodynamic analysis of biomass gasification and torrefaction. Dissertation, Eindhoven

    Google Scholar 

  13. Lange S (2008) Systemanalytische Untersuchung zur Schnellpyrolyse als Prozessschritt bei der Produktion von Synthesekraftstoffen aus Stroh und Waldrestholz. Dissertation, Karlsruhe

    Google Scholar 

  14. Bergman PCA, Kiel JHA (2005) Torrefaction for biomass upgrading. ECN report, ECN-RX—05-180, Petten

    Google Scholar 

  15. Bridgwater AV, Meier D, Radlein D (1999) An overview of fast pyrolysis of biomass. Org Geochem 30:1479–1493

    Article  Google Scholar 

  16. Higman C, van der Burgt M (2003) Gasification, 1. Aufl. Gulf professional publishing, Elsevier science, Burlington

    Google Scholar 

  17. Vogel, A, Bolhàr-Nordenkampf, M, Kaltschmitt, M, Hofbauer, H (2006) Analyse und Evaluierung der thermo-chemischen Vergasung von Biomasse. Schriftenreihe “Nachwachsende Rohstoffe“, Band 29, Teil 1: Technologische und verfahrenstechnische Untersuchungen, Landwirtschaftsverlag GmbH, Münster

    Google Scholar 

  18. Hofbauer, H (2007) Wirbelschichtvergasung – Stand der Technik. Internationale Tagung Thermo-chemische Biomasse-Vergasung für eine effiziente Strom-/Kraftstoffbereitstellung – Erkenntnisstand 2007, Leipzig

    Google Scholar 

  19. Meyer B (2007) Entwicklungsdefizite und –perspektiven der großtechnischen Gaserzeugung-/reinigung. Internationale Tagung Thermo-chemische Biomasse-Vergasung für eine effiziente Strom-/Kraftstoffbereitstellung – Erkenntnisstand 2007, Leipzig

    Google Scholar 

  20. Köppel W (2007) Gasreinigung – Stand der Technik. Internationale Tagung Thermo-chemische Biomasse-Vergasung für eine effiziente Strom-/Kraftstoffbereitstellung – Erkenntnisstand 2007, Leipzig

    Google Scholar 

  21. Hedden K, Anderlohr A, Becker J, Zeeb H-P, Cheng Y-H (1986) Gleichzeitige Konvertierung und Methanisierung CO-reicher Gase. Forschungsbericht der DVGW-Forschungsstelle am Engler-Bunte-Institut der Universität Karlsruhe (TH), T 86-044, Karlsruhe

    Google Scholar 

  22. Friedrichs G, Proplesch P, Wismann G, Lommerzheim W (1985) Methanisierung von Kohlevergasungsgasen im Wirbelbett Pilot-Entwicklungsstufe. Forschungsbericht der Thyssengas GmbH, T 85-106, Duisburg

    Google Scholar 

  23. Seemann M (2006) Methanation of biosyngas in a fluidized bed reactor – development of a one-step synthesis process, featuring simultaneous methanation, watergas shift and low temperature tar reforming. Dissertation, Zurich

    Google Scholar 

  24. Ullmann’s Encyclopedia of Industrial Chemistry (2006) Gas production. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

    Google Scholar 

  25. Lurgi GmbH (2009) Rectisol®-Verfahren. http://www.lurgi.com/website/fileadmin/user_upload/pdfs/11_Rectisol-DE.pdf, State. Accessed 11 Dec 2009

  26. UOP LLC (2009) UOP SelexolTM process. http://www.uop.com/objects/Selexol.pdf, State. Accessed 11 Dec 2009

  27. Kohl AL, Nielsen, RB (1997) Gas purification, 5 Aufl. Gulf Publishing Company, Elsevier Science, Houston

    Google Scholar 

  28. Cerbe G (2004) Grundlagen der Gastechnik – Gasbeschaffung, Gasverteilung, Gasverwendung. Carl Hanser Verlag, München/Wien

    Google Scholar 

  29. Rehling B, Hofbauer H, Rauch R, Tremmel H, Aichernig C, Schildhauer T, Biollaz S, Ulrich D, Schaub M (2009) Bio-SNG – first results of the 1MW pilot and demonstration unit at Güssing. In: International conference on polygeneration strategies, Vienna, 2009

    Google Scholar 

  30. Hofbauer H, Rauch R, Loeffler G, Kaiser S, Fercher E, Tremmel H (2002) Six years experience with the FICFB-gasification process. In: 12th European conference and technology exhibition on biomass for energy, industry and climate protection, Amsterdam, 2002

    Google Scholar 

  31. Verein Deutscher Ingenieure e. V. (VDI) (2000) VDI 2067: Wirtschaftlichkeit gebäudetechnischer Anlagen – Grundlagen und Kostenrechnung. Blatt 1, Beuth Verlag GmbH, Berlin

    Google Scholar 

  32. Commission of the European communities (2008) Proposal for a directive of the European parliament and of the council on the promotion of the use of energy from renewable sources. COM(2008) 19, Brussels

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Seiffert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this entry

Cite this entry

Seiffert, M., Rönsch, S. (2013). Biosynthetic Natural Gas. In: Kaltschmitt, M., Themelis, N.J., Bronicki, L.Y., Söder, L., Vega, L.A. (eds) Renewable Energy Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5820-3_256

Download citation

Publish with us

Policies and ethics