Skip to main content

Solar Cells , Chalcopyrite-Based Thin Film

  • Reference work entry
  • First Online:
Solar Energy
  • 6109 Accesses

Definition of Subject

Developments in photovoltaics technologies aim for solutions that allow manufacturing of efficient photovoltaic modules at low cost. The chalcopyrite-type compounds Cu(In,Ga)(S,Se)2 (CIGS) or (CIS) are semiconductors which could significantly contribute as thin-film materials to the future share of photovoltaics in the supply of electrical power. In a long-lasting process of understanding the specific properties, CIGS became one of the most attractive materials for efficient thin-film photovoltaic modules. The remarkable attention received by CIGS as a future material for thin-film solar cells results from the specific properties of this fascinating semiconductor:

  • Lab cell efficiencies beyond 20%

  • Very high flexibility for manufacturing

  • Free choice of substrates (glass or flexible foils)

The high-efficiency potential makes it one of the most important materials for thin-film photovoltaic technologies.

Introduction

The history of CIGS began in the early 1950s when...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 449.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Chalcopyrite compounds:

These compounds originate from the mineral CuFeS2 and are composed of elements with valence states I–III–VI2. Due to ordering of the different cations, the unit cell is a doubled zinc blende unit cell.

Defects:

Disorders of the crystal lattice either intrinsically (vacancies, interstitials, antisites) or by extrinsic impurities. Photovoltaic quality of the material depends on the concentration of defects.

Grain boundaries:

Interfaces between different grains.

Heterojunctions:

In contrast to pn junctions formed by doping a homogeneous semiconductor, heterojunctions use to two different semiconductors.

High efficiency:

Present high-efficiency PV modules reach efficiencies 15% to over 20% in production.

Polycrystalline thin films:

The films consist of single grain with a size in the order of the thickness of the film or smaller. Typical grain sizes are in the 0.1–5 μm range.

Thin-film solar cells:

Solar cells that are produced by technologies that allow deposition of materials on very large areas. Depending on the absorber material, thicknesses are in the range of 0.1–20 μm.

Bibliography

Primary Literature

  1. Hahn H, Frank G, Klingler W, Meyer A, Störger G (1953) Untersuchungen über ternäre Chalkogenide. V. Über einige ternäre Chalkogenide mit Chalkopyritstruktur Z Anorg. u Allg Chem 271:153–170

    Article  Google Scholar 

  2. Wagner S, Shay JL, Migliorato P, Kasper HM (1974) CuInSe2/Cd Shetero junction photovoltaic detectors. Appl Phys Lett 25:434–435

    Article  Google Scholar 

  3. Kazmerski LL, Ayyagari MS, Juang YJ, Patterson RP (1977) Growth and characterisation of thin film compound semiconductor heterojunctions. J Vac Sci Technol 13:65

    Article  Google Scholar 

  4. Mickelsen RA, Chen WS, Hsiao YR, Lowe VE (1984) Polycrystalline thin-film CUINSE2/CDZNS solar-cells. IEEET Trans Electron Devices 31(5):542–546

    Article  Google Scholar 

  5. Kazmerski LL (1983) Ternary-compound thin-film solar cells. Il Nuovo Cimento 2D:2013

    Article  Google Scholar 

  6. Jackson P, Hariskos D, Lotter E, Paetel S, Wuerz R, Menner R, Wischmann W, Powalla M (2011) New world record efficiency for Cu(In,Ga)Se2 thin-film solar cells beyond 20%. Prog Photovolt Res Appl. doi:10.1002/pip.1078

    Google Scholar 

  7. Jasenek A, Schock HW, Werner JH, Rau U (2001) Defect annealing in Cu(In, Ga)Se2 heterojunction solar cells after high-energy electron irradiation. Appl Phys Lett 79(18):2922–2924

    Article  Google Scholar 

  8. Gödecke T, Haalboom T, Ernst F (2000) Phase equilibria of Cu–In–Se. Zeitschriftfür Metallkunde 91:622–662

    Google Scholar 

  9. Zott S, Leo K, Ruckh M, Schock HW (1997) Radiative recombination in CuInSe2 thin films. J Appl Phys 82(1):356–367

    Article  Google Scholar 

  10. Dirnstorfer I, Wagner MT, Hofmann DM, Lampert MD, Karg F, Meyer BK (1998) Physica characterization of CuIn(Ga)Se2 thin films. Stat Sol A 168:163–175

    Article  Google Scholar 

  11. Klaer J, Klenk R, Schock HW (2007) Progress in the development of CuInS2 based mini-modules. Thin Solid Films 515(15):5929–5933

    Article  Google Scholar 

  12. Stephan C, Schorr S, Tovar M, Schock HW (2011) Comprehensive insights into point defect and defect cluster formation in CuInSe2. Appl Phys Lett 98:091906

    Article  Google Scholar 

  13. Herberholz R, Rau U, Schock HW, Haalboom T, Gödecke T, Ernst F, Beilharz C, Benz KW, Cahen D (1999) Phase segregation, Cu migration and junction formation in Cu(In, Ga)Se2. Eur Phys J Appl Phys 6(2):131–139

    Article  Google Scholar 

  14. Endo S, Irie T, Nakanishi H (1986) Preparation and some properties of CuInSe2 single crystals. Sol Cells 16:1–15

    Article  Google Scholar 

  15. Schock HW, Rau U (2001) The role of structural properties and defects for the performance of Cu-chalcopyrite-based thin-film solar cells. Physica B 308:1081–1085

    Article  Google Scholar 

  16. Siebentritt S, Igalson M, Persson C, Lany S (2010) The electronic structure of chalcopyrites: bands, point defects and grain boundaries. Prog Photovolt 18:390–410

    Article  Google Scholar 

  17. Cahen D (1987) Some thoughts about defect chemistry in ternaries. In: Proceedings of the 7th international conference on ternary and multinary compounds. Mat Res Soc, Pittsburgh, pp 433–442

    Google Scholar 

  18. Burgelman M, Engelhardt F, Guillemoles J-F, Herberholz R, Igalson M, Klenk R, Lampert M, Meyer T, Nadenau V, Niemegeers A, Parisi J, Rau U, Schock H-W, Schmitt M, Seifert O, Walter T, Zott S (1997) Defects in Cu(In, Ga)Se2 semiconductors and their role in the device performance of thin-film solar cells. Prog Photovoltaic Res Appl 5:121–130

    Article  Google Scholar 

  19. Migliorato P, Shay JL, Kasper HM, Wagner S (1975) Analysis of the electrical and luminescent properties of CuInSe2. J Appl Phys 46:1777–1782

    Article  Google Scholar 

  20. Noufi R, Axton R, Herrington C, Deb SK (1984) Electronic properties versus composition of thin films of CuInSe2. Appl Phys Lett 45:668–670

    Article  Google Scholar 

  21. Zhang SB, Wei SH, Zunger A, Katayama-Yoshida H (1998) Defect physics of the CuInSe2 chalcopyrite semiconductor. Phys Rev B 57:9642

    Article  Google Scholar 

  22. Zhang SB, Wei SH, Zunger A (1997) Stabilization of ternary via ordered arrays of defect pairs. Phys Rev Lett 78:4059–4062

    Article  Google Scholar 

  23. Hornung M, Benz KW, Margulis L, Schmid D, Hornung M, Benz KW, Margulis L, Schmid D, Schock HW (1995) Growth of Bulk Cu0.85In1.05Se2 and characterization on a micro scale. J Cryst Growth 154:315

    Article  Google Scholar 

  24. Schmid D, Ruckh M, Grunwald F, Schock HW (1993) Chalcopyrite/defect chalcopyrite heterojunctions on the basis of CuInSe2. J Appl Phys 73:2902

    Article  Google Scholar 

  25. Schmid D, Ruckh M, Schock HW (1996) Photoemission studies on Cu(In, Ga)Se-2 thin films and related binary selenides. Appl Surf Sci 103(4):409–429

    Article  Google Scholar 

  26. Mönig H, Fischer Ch-H, Caballero R, Kaufmann CA, Allsop N, Gorgoi M, Klenk R, Schock H-W, Lehmann S, Lux-Steiner MC, Lauermann I (2009) Surface Cu depletion of Cu(In, Ga)Se2 films: an investigation by hard X-ray photoelectron spectroscopy. Acta Mater 57:3645–3651

    Article  Google Scholar 

  27. Nichterwitz M, Abou-Ras D, Sakurai K, Bundesmann J, Unold T et al (2009) Influence of grain boundaries on current collection in Cu(In, Ga)Se2 thin-film solar cells. Thin Solid Films 517:2554–2557

    Article  Google Scholar 

  28. Ruckh M, Schmid D, Kaiser M, Schäffler R, Walter T, Schock HW (1996) Influence of substrates on the electrical properties of Cu(In,Ga)Se2 thin films. Solar Energy Mater Solar Cells 41/42:335

    Article  Google Scholar 

  29. Holz J, Karg F, Phillipsborn HV (1994) The effect of substrate impurities on the electronic conductivity in CIGS thin films. In: Stephens HS, Associates Proceedings of the 12th European photovoltaic solar energy, conference. Bedford, Amsterdam, pp 1592–1595

    Google Scholar 

  30. Hedström J, Ohlsen H, Bodegard M, Kylner A, Stolt L, Hariskos D, Ruckh M, Schock H-W (1993) ZnO/CdS/Cu(In,Ga)Se2 thin film solar cells with improved performance. In: Conference record 23 rd. IEEE photovoltaic specialists conference. IEEE Press Piscataway, Louisville, pp 364–371

    Google Scholar 

  31. Stolt L, Hedström J, Kessler J, Ruckh M, Velthaus KO, Schock HW (1993) ZnO/CdS/CuInSe2thin-film solar cells with improved performance. Appl Phys Lett 62:597–599

    Article  Google Scholar 

  32. Nakada T, Iga D, Ohbo H, Kunioka A (1997) Effects of sodium on Cu(In, Ga)Se2-based thin films and solar cells. Jpn J Appl Phys 36:732–737

    Article  Google Scholar 

  33. Contreras MA, Egaas B, Dippo P, Webb J, Granata J, Ramanathan K, Asher S, Swartzlander A, Noufi R (1997) On the role of Na and modifications to Cu(In,Ga)Se absorber materials using thin MF (M = Na, K, Cs) precursor layers. In: Conference record: 26th. IEEE photovoltaic specialists conference. IEEE Press, Piscataway, Anaheim, pp 359–362

    Google Scholar 

  34. Schäffler R, Hariskos D, Kaiser M, Ruckh M, Rühle U, Schock HW (1996) Electrical characterization of Cu(In, Ga)Se2 chalcopyrite thin films: methods of influencing the effective doping. Cryst Res Technol 31:543

    Google Scholar 

  35. Braunger D, Hariskos D, Bilger G, Rau U, Schock HW (2000) Influence of sodium on the growth of polycrystalline Cu(In, Ga)Se2 thin films. Thin Solid Films 361–362:161–166

    Article  Google Scholar 

  36. Wolf D (1998) Technologienahe in-situ Analyse der Bildung von CuInSe2 zurAnwendung in Dünnschicht-Solarzellen. Dissertation Universität Erlangen-Nürnberg

    Google Scholar 

  37. Niles DW, Ramanathan K, Haason F, Noufi R, Tielsh BJ, Fulghum JE (1997) Na impurity chemistry in photovoltaic CIGS thin films: Investigation with X-ray photoelectron spectroscopy. J Vac Sci Technol A 15:3044–3049

    Article  Google Scholar 

  38. Kronik L, Cahen D, Schock HW (1998) Effects of sodium on polycrystalline Cu(In, Ga)Se2 and its solar cell performance. Adv Mater 10:31–36

    Article  Google Scholar 

  39. Schroeder DJ, Rockett AA (1997) ‘Electronic effects of sodium in epitaxial CuIn1−xGaxSe2. J Appl Phys 82:5982–5985

    Article  Google Scholar 

  40. Rudmann D, da Cunha AF, Kaelin M, Kurdesau F, Zogg H, Tiwari AN, Bilger G (2004) Efficiency enhancement of Cu(In, Ga)Se2 solar cells due to post-deposition Na incorporation. Appl Phys Lett 84:1129

    Article  Google Scholar 

  41. Chirilă A, Buecheler S, Pianezzi F, Bloesch P, Gretener C, Uhl AR, Fella C, Kranz L, Perrenoud J, Seyrling S, Verma R, Nishiwaki S, Romanyuk YE, Bilger G, Tiwari AN (2011) Highly efficient Cu(In, Ga)Se2 solar cells grown on flexible polymer films. Nat Mater 10:857–861

    Article  Google Scholar 

  42. Paoricia C, Zanottia L, Romeo N, Sberveglierib G, Tarricone L (1979) Crystal growth and properties of CuGaxIn1−xSe2 chalcopyrite compound. Solar Energy Mater 1:3–9

    Article  Google Scholar 

  43. Kötschau IM, Turcu M, Rau U, Schock HW (2001) Structural and electronic properties of Cu(In,Ga)(Se,S)2 alloys. Mat Res Symp Proc 668:H4.5

    Article  Google Scholar 

  44. Turcu M, Koetschau IM, Rau U (2002) Composition dependence of defect energies and band alignments in the Cu In1−x GaxSe1−y Sy alloy system. J Appl Phys 91:1391

    Article  Google Scholar 

  45. Schock HW (1994) Solar cells based on CuInSe2 and related compounds: recent progress in Europe. Sol Energy Mater Sol Cell 34(1–4):19–26

    Article  Google Scholar 

  46. Klenk R, Walter T, Schock HW, Cahen D (1993) A model for the successful growth of polycrystalline films of CuInSe2 by multisource physical vacuum evaporation. Adv Mat 5:114–119

    Article  Google Scholar 

  47. Niki S, Contreras M, Repins I, Powalla M, Kushiya K, Ishizuka S, Matsubara K (2010) CIGS absorbers and processes. Prog Photovolt: Res Appl 18:453–466

    Article  Google Scholar 

  48. Niki S, Fons PJ, Yamada A, Suzuki R, Ohdaira T, Ishibashi S, Oyanagai H (1994) High quality CuInSe2 epitaxial films – molecular beam epitaxial growth and intrinsic properties. Inst Phys Conf Ser 152E:221–227

    Google Scholar 

  49. Tiwari AN, Blunier S, Zogg H, Filzmoser M, Schmid D, Schock HW (1994) Characterization of heteroepitaxial CuIn3Se5 and CuInSe2 layers on Si substrates. Appl Phys Lett 65(26):3347

    Article  Google Scholar 

  50. Rega N, Siebentritt S, Beckers IE, Beckmann J, Albert J, Lux-Steiner M (2003) Defect spectra in epitaxial CuInSe2 grown by MOVPE. Thin Solid Films 431–432:186–189

    Article  Google Scholar 

  51. Kazmerski LL, Ayyagari MS, White FR, Sanborn GA (1976) Growth and properties of vacuum deposited CuInSe2 thin films. J Vac Sci Technol 13:139

    Article  Google Scholar 

  52. Wada T, Nishikawa S, Hashimoto Y, Negami T (2001) Physical vapour deposition of Cu(In,Ga)Se2 films for industrial applications. Mater Res Symp Proc 668:2.1.1

    Article  Google Scholar 

  53. Sakurai K, Hunger R, Scheer R, Kaufmann CA, Yamada A, Baba T, Kimura Y, Matsubara K, Fons P, Nakanishi H, Niki S (2004) In situ diagnostic methods for thin-film fabrication: utilization of heat radiation and light scattering. Prog Photovolt: Res Appl 12:219–234

    Article  Google Scholar 

  54. Mickelsen RA, Chen WS (1980) High photocurrent polycrystalline thin-film CdS/CuInSe2 solar cell. Appl Phys Lett 36:371–373

    Article  Google Scholar 

  55. Mickelsen RA, Chen WS (1982) Polycrystalline thin-film CuInSe2 solar cells. In: Conference record 16th. IEEE photovoltaic specialists conference. IEEE Press, Piscataway, San Diego, pp 781–785

    Google Scholar 

  56. Kessler J, Schmid D, Dittrich H, Schock HW (1994) CuInSe2 film formation from sequential deposition of In(Se):Cu:Se. In: Proceedings of the 12th European photovoltaic solar energy conference, Amsterdam, p. 648

    Google Scholar 

  57. Gabor AM, Tuttle JR, Albin DS, Contreras MA, Noufi R, Hermann AM (1994) High-efficiency CuInxGa1−xSe2 solar cells from (InxGa1−x)2 Se3 precursors. Appl Phys Lett 65:198–200

    Article  Google Scholar 

  58. Gabor AM, Tuttle JR, Bode MH, Franz A, Tennant AL, Contreras MA, Noufi R, Jensen DG, Hermann AM (1996) Band-gap engineering in Cu(In, Ga)Se2 thin films grown from (In, Ga)2Se3 precursors. Solar Energy Mater Solar Cells 41:247–260

    Article  Google Scholar 

  59. Dullweber T, Hanna G, Rau U, Schock HW (2001) A new approach to high efficiency solar cells by band gap grading in Cu(In, Ga)Se2 chalcopyrite semiconductors. Solar Energy Mater Solar Cells 67:145–150

    Article  Google Scholar 

  60. Kaufmann CA, Caballero R, Unold T, Hesse R, Klenk R, Schorr S, Nichterwitz M, Schock H-W (2009) Depth profiling of Cu(In, Ga)Se2 thin films grown at low temperatures. Solar Energy Mater Solar Cells 93:859–863

    Article  Google Scholar 

  61. Probst V, Karg F, Rimmasch J, Riedl W, Stetter W, Harms H, Eibl O (1996) Advanced stacked elemental layer progress for Cu(InGa)Se2 thin film photovoltaic devices. Mater Res Soc Symp Proc 426:165–176

    Article  Google Scholar 

  62. Binsma JJM, Van der Linden HA (1982) Preparation of thin CuInS2 films via a two-stage process. Thin Solid Films 97:237–243

    Article  Google Scholar 

  63. Chu TL, Chu SC, Lin SC, Yue J (1984) Large grain copper indium diselenide films. J Electrochem Soc 131:2182–2184

    Article  Google Scholar 

  64. Kapur VK, Basol BM, Tseng ES (1987) Low-cost methods for the production of semiconductor films for CuInSe2/CdS solar cells. Solar Cells 21:65–72

    Article  Google Scholar 

  65. Mitchell KCE, Ermer J, Pier D (1988) Single and tandem junction CuInSe2 cell and module technology. In: Conference record 20th IEEE photovoltaic specialists conference. IEEE Press, Piscataway, Las Vegas, pp 1384–1389

    Google Scholar 

  66. Solar frontier press release 2011. http://www.solar-frontier.com

  67. Thouin L, Vedel J (1995) Electrodeposition and characterization of CulnSe2 thin films. J Electrochem Soc 142:2996–3001

    Article  Google Scholar 

  68. Abken A, Heinemann F, Kampmann A, Leinkühler G, Rechid J, Sittinger V, Wietler T, Reineke-Koch R (1998) Large area electrodeposition of Cu(In,Ga)Se2 precursors for the fabrication of thin film solar cells. In: Proceedings of the 2nd world conference on photovoltaic solar energy conversion. European Commission, Vienna, pp 1133–1136

    Google Scholar 

  69. Guillien C, Herrero J (2001) Recrystallization and components redistribution processes in electrodeposited CuInSe2 thin films. Thin Solid Film 387:57–59

    Article  Google Scholar 

  70. Eberspacher C, Pauls KL, Fredric CV (1998) Improved processes for forming CuInSe2 films. In: Proceedings of the 2nd world conference on photovoltaic solar energy conversion. European Commission, Vienna, pp 303–306

    Google Scholar 

  71. Kapur VK, Fisher M, Roe R (2001) Nanoparticel oxide precursor inks from thin film copper gallium indium selenide (CIGS) solar cells. Mater Res Symp Proc 668:H2.6

    Google Scholar 

  72. Ramanathan K, Bhattacharya RN, Granata J, Webb J, Niles D, Contreras MA, Wiesner H, Haason FS, Noufi R (1998) Advances in CIGS solar cell research at NREL. In: Conference. record 26th IEEE photovoltaic specifications conference. IEEE Press, Piscataway, Anaheim, pp 319–325

    Google Scholar 

  73. Battacharya RN, Fernandez AM (2001) CuIn1-xGaxSe2 based photovoltaic cells from electrodeposited precursor films. Mater Res Symp Proc 668:H 8.10

    Google Scholar 

  74. Dimmler B, Schock HW (1996) Scaling-up of CIS technology for thin-film solar modules. Prog Photovolt Res Appl 4:425

    Article  Google Scholar 

  75. Solar Frontier (2011) Japan’s largest solar panel factory reaches full commercial operations, announces solar frontier. http://www.solar-frontier.com/news/143. Accessed 29 July 2011

  76. Dimmler B, Powalla M, Schock H (2002) CIS-based thin-film photovoltaic modules: potential and prospects. Prog Photovolt: Res Appl 10:149–157

    Article  Google Scholar 

  77. (2011) http://en.wikipedia.org/wiki/Nanosolar

  78. Nanosolar Communications (2011) Nanosolar achieves 17.1% aperture efficiency through printed CIGS process. http://www.nanosolar.com. Accessed 5 Oct 2011

  79. Naghavi N, Abou-Ras D, Allsop N, Barreau N, Buecheler S, Ennaoui A, Fischer C-H, Guillen C, Hariskos D, Herrero J, Klenk R, Kushiya K, Lincot D, Menner R, Nakada T, Platzer- Bjoerkman C, Spiering S, Tiwari AN, Toerndahl T (2010) Buffer layers and transparent conducting oxides for chalcopyrite Cu(In,Ga)(S,Se)2 based thin film photovoltaics: present status and current developments. Prog Photovolt 18:411–433

    Article  Google Scholar 

  80. Dalibor T, Jost S, Vogt H, Heiß A, Visbeck S, Happ T, Palm J, Avellán A, Niesen T, Karg F (2011) Towards module efficiencies of 16% with an improved CIGSSe device design. In: 26th EU PVSEC, Hamburg

    Google Scholar 

  81. Powalla M, Cemernjak M, Eberhardt J, Kessler F, Kniese R, Mohring HD, Dimmler B (2006) Large-area CIGS modules: pilot line production and new developments. Solar Energy Mater Solar Cells 90(18–19):3158–3164

    Article  Google Scholar 

  82. Britt JS, Wiedeman S, Schoop U, Verebelyi D (2008) High-volume manufacturing of flexible and lightweight CIGS solar cells. In: Proceedings of the 33rd IEEE photovoltaic specifications conference, San Diego

    Google Scholar 

  83. Sugimoto H, Kawaguchi Y, Yasaki Y, Aramoto T, Tanaka Y, Hakuma H, Kuriyagawa S, Kushiya K (2011) Challenge to 18% efficiency with 30 x 30cm2-sized Cu(InGa)(SeS)2 submodules. In: Proceedings of the 26th EU photovoltaics solar energy conference, Hamburg, pp 2307–2310

    Google Scholar 

  84. Unold T, Schock HW (2011) Nonconventional (non-silicon-based) photovoltaic materials. Annu Rev Mater Res 41:297–321

    Article  Google Scholar 

  85. Edoff M, Schleussner S, Wallin E, Lundberg O (2011) Technological and economical aspects on the influence of reduced Cu(In, Ga)Se2 thickness and Ga grading for co-evaporated Cu(In, Ga)Se2 modules. Thin Solid Films 519:7530–7753

    Article  Google Scholar 

  86. Orgassa K, Schock HW, Werner JH (2003) Alternative back contact materials for thin film Cu(In,Ga)Se2 solar cells. Thin Solid Film 431–432:387

    Google Scholar 

  87. Siebentritt S (2011) What limits the efficiency of chalcopyrite solar cells? Solar Energy Mater Solar Cells 95:1471–1476

    Article  Google Scholar 

  88. Repins I, Contreras MA, Egaas B, DeHart C, Scharf J, Perkins CL, To B, Noufi R (2008) 19·9%-efficient ZnO/CdS/CuInGaSe2 solar cell with 81·2% fill factor. Prog Photovolt 16(3):235–239

    Article  Google Scholar 

  89. Haarstrich J, Metzner H, Oertel M, Ronning C, Rissom T, Kaufmann CA, Unold T, Schock HW, Windeln J, Mannstadt W, Rudigier-Voigt E (2011) Increased homogeneity and open-circuit voltage of Cu(In, Ga)Se2 solar cells due to higher deposition temperature. Solar Energy Mater Solar Cells 95:1028

    Article  Google Scholar 

  90. Hanket GM, Boyle JH, Shafarman WN (2009) Characterization and device performance of (Ag,Cu)(In,Ga)Se2 absorber layers. In: Proceedings of the 35th IEEE photovoltaics specialists conference, Hawaii, pp 1240

    Google Scholar 

  91. Contreras MA, Mansfield LM, Egaas B, Li J, Romero1 M, Noufi R, Rudigier-Voigt E, Mannstadt W (2011) Improved energy conversion efficiency in wide bandgap Cu(In,Ga)Se2 solar cells. In: Proceedings of 35th IEEE photovoltaic specialists conference, Seattle

    Google Scholar 

  92. Merdes S, Mainz R, Klaer J, Meeder A, Rodriguez-Alvarez H, Schock HW, Lux-Steiner MCh, Klenk R (2011) 12.6% efficient CdS/Cu(In, Ga)S2-based solar cell with an open circuit voltage of 879 mV prepared by a rapid thermal process. Solar Energy Mater Solar Cells 95:864–869

    Article  Google Scholar 

  93. Schubert B-A, Marsen B, Cinque S, Unold T, Klenk R, Schorr S, Schock HW (2011) Cu2ZnSnS4 thin film solar cells by fast coevaporation. Prog Photovolt 19:93–96

    Article  Google Scholar 

  94. Weber A, Mainz R, Unold T, Schorr S, Schock HW (2009) In-situ XRD on formation reactions of Cu2ZnSnS4 thin films. Phys Stat Sol C 6(5):1245–1248

    Article  Google Scholar 

  95. Ito K, Nakazawa T (1989) In: Proceedings 4th international conference on PVSEC, pp 341–346

    Google Scholar 

  96. Friedlmeier TM, Dittrich H, Schock HW (1998) Growth and characterization of Cu2ZnSnS4 and Cu2ZnSnSe4 thin films for photovoltaic applications. Inst Phys Conf Ser 152:345–348, IOP Publ Ltd

    Google Scholar 

  97. Katagiri H, Jimbo K, Yamada S et al (2008) Enhanced conversion efficiencies of Cu2ZnSnS4-based thin film solar cells by using preferential etching technique. Appl Phys Express 1:041201–041202

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans-Werner Schock .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this entry

Cite this entry

Schock, HW. (2013). Solar Cells , Chalcopyrite-Based Thin Film. In: Richter, C., Lincot, D., Gueymard, C.A. (eds) Solar Energy. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5806-7_464

Download citation

Publish with us

Policies and ethics