Skip to main content

CdTe Solar Cells

  • Reference work entry
  • First Online:

Definition of the Subject

CdTe thin film solar cells and modules are currently the driving force for production cost reduction in the whole photovoltaic sector. The device concept is simple consisting of multilayer stack of metal and semiconducting thin films. For the deposition of these layers a variety of large area and high-speed deposition methods are available. The CdTe solar cell as it is known today was first described in 1969 by Adirovich et al. [1]. In the beginning of the twenty-first century CdTe solar modules dominated the PV market in terms of production volume and lowest cost. This chapter is a review of more than 40 years of research and development activities and hot topics in the field of CdTe thin film photovoltaics.

Introduction

Still today the photovoltaic (PV) market is dominated by silicon wafer-based solar modules; however, in 2009 the annual production volume of CdTe thin film solar modules...

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   449.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

CdTe:

Inorganic compound semiconductor with high absorption coefficient (larger than 104 cm−1) and almost ideal energy bandgap (1.49 eV) for terrestrial photovoltaic applications.

Conversion efficiency:

Ratio between the useful electrical power of the solar cell or module to the incoming sunlight power (here called efficiency). The conversion efficiency of solar cells and modules depends on external parameters such as temperature, irradiation intensity, and spectrum. For comparable results the conversion efficiency has to be measured under standard test conditions (STC). If not otherwise mentioned the presented efficiency values are measured under STC.

Heterojunction:

A pn-junction where the p- and n-type semiconductors are different materials such as a junction in the CdTe/CdS stack.

Photovoltaic (effect):

Direct conversion of the sunlight into electricity, first discovered by A. E. Becquerel in 1839.

pn-junction:

Combination of p- and n-type semiconductors for the separation of charge carriers generated by the photovoltaic effect.

Solar cell:

Electronic device for direct conversion of solar energy into electrical energy using the photovoltaic effect (also called photovoltaic cell).

Solar module:

Interconnection of a number of solar cells in series for increasing the output voltage or in parallel for increasing the output current.

Standard test conditions (STC):

Definition of the external parameters for the device under test during determination of the photovoltaic performance. These include a defined irradiation intensity of 100 mW/cm2, a reference illumination spectrum AM1.5 G, and device temperature of 25 °C.

Thin film:

Layer of material with thickness between sub-nanometer and few micrometers. Thin film solar cells consist of a stack of several thin films with different properties and functions.

Bibliography

  1. Adirovich EI, Yuabov YM, Yagudaev GR (1969) Photoelectric effects in film diodes with CdSCdTe heterojunctions. Sov Phys Semicond 3:61

    Google Scholar 

  2. Osborne M (2009) First Solar’s market share set to soar. www.pv-tech.org. Accessed 6 Oct 2010

  3. First Solar Inc. (2010) Corporate overview Q2 2010, www.first-solar.com. Accessed 6 Oct 2010

  4. Hansen GL, Schmit JL, Casselman TN (1982) Energy gap versus alloy composition and temperature in Hg1-xCdxTe. J Appl Phys 53:7099

    Article  Google Scholar 

  5. Rothwarf A, Ber KW (1975) Direct conversion of solar energy through photovoltaic cells. Prog Solid State Chem 10:71

    Article  Google Scholar 

  6. Shockley W, Queisser HJ (1961) Detailed balance limit of efficiency of p-n junction solar cells. J Appl Phys 32:510

    Article  Google Scholar 

  7. DeVoc A, Parrott JE, Baruch P, Landsberg PT (1994) Bandgap effects in thin-film heterojunction solar cells. In: Proc of 12th European Photovoltaic Solar Energy Conf, Amsterdam, The Netherlands, pp 1315–1318

    Google Scholar 

  8. Rappaport P (1959) The photovoltaic effect and its utilization. Sol Energy 3:8

    Article  Google Scholar 

  9. Mimila-Arroyo J, Marfaing Y, Cohen-Solal G, Triboulet R (1979) Electric and photovoltaic properties of CdTe pn homojunctions. Sol Energy Mater Sol Cells 1:171

    Article  Google Scholar 

  10. Cohen-Solal G, Lincot D, Barbe M (1988) High efficiency shallow p(+)nn(+) cadmium telluride solar cells. Sol Cells 23:1

    Article  Google Scholar 

  11. Goren D, Amir N, Khanin E, Asa G, Nemirovsky Y (1996) Single crystalline CdTe solar cells grown by MOCVD. Sol Energy Mater Sol Cells 44:341

    Article  Google Scholar 

  12. Justi EW, Schneider G, Seredynski J (1973) Investigations on CdTe thin film solar cells. Energy Convers Manag 13:53

    Article  Google Scholar 

  13. Muller RS, Zuleeg R (1964) Vapor-deposited, thin-film heterojunction diodes. J Appl Phys 35:1550

    Article  Google Scholar 

  14. Nakazawa T, Takamizawa K, Ito K (1987) High efficiency indium oxide/cadmium telluride solar cells. Appl Phys Lett 50:279

    Article  Google Scholar 

  15. Bonnet D, Rabenhorst H (1972) New results on the development of a thin film p-CdTe/n-CdS heterojunction solar cell. In: Proc of 9th Photovoltiac Specialist Conf, Freiburg, pp. 129–131

    Google Scholar 

  16. Bube R (1998) Photovoltaic materials. Imperial College, London

    Book  Google Scholar 

  17. McCandless BE, Sites JR (2003) Cadmium telluride solar cells. In: Luque A, Hegedus S (eds) Handbook of photovoltaic science and engineering. Wiley, Chichester/Hoboken, pp 617–662

    Google Scholar 

  18. Burgelman M (2006) Cadmium telluride thin film solar cells. In: Poortmans J, Arkhipov V (eds) Thin film solar cells: fabrication, characterization, and application. Wiley, Chichester

    Google Scholar 

  19. Coutts T, Kazmerski L, Wagner S (1988) Special issue on cadmium tellunde. Sol Cells 23:1

    Article  Google Scholar 

  20. Romeo A, Terheggen M, Abou-Ras D, Baetzner DL, Haug F-J, Kaelin M, Rudmann D, Tiwari AN (2004) Development of thin-film Cu(In, Ga)Se2 and CdTe solar cells. Prog Photovoltaics Res Appl 12:93

    Article  Google Scholar 

  21. Wu X, Keane JC, Dhere RC, DeHart C, Albin DS, Duda A, Gessert TA, Asher S, Levi DH, Sheldon P (2001) 16.5%-efficient CdS/CdTe polycrytalline thin-film solar cell. In: Proc of 17th European Photovoltaic Solar Energy Conf, Munich, Germany, p 995

    Google Scholar 

  22. Wu X (2004) High-efficiency polycrystalline CdTe thin-film solar cells. Sol Energy 77:803

    Article  Google Scholar 

  23. McCandless BE, Buchanan WA, Birkmire RW (2005) High throughput processing of CdTe/CdS solar. In: Proc of 31st IEEE Photovoltaic Specialist Conf, Lake Buena Vista, USA, pp 295–298

    Google Scholar 

  24. Gupta A, Compaan AD (2003) All sputtered 14% CdS/CdTe device with ZnO: Al front contact. In: Kurokawa K, Kazmerski L, McNelis B, Yamaguchi M, Wronski C, Sinke W (eds) Proc of 3 rd World Conf on Photovoltaic Energy Conversion, Osaka, Japan, pp 352–355

    Google Scholar 

  25. Perrenoud J, Kranz L, Buecheler S, Pianezzi F, Tiwari AN (2010) The use of aluminum doped ZnO as transparent conductive oxide for CdS/CdTe solar cells. Thin Solid Films. doi:10.1016/j.tsf.2010.12.234

    Google Scholar 

  26. Woodcock JM, Turner AK, Ozsan ME, Summers JG (1991) Thin film solar cells based on electrodeposited CdTe. In: Proc of 22nd IEEE Photovoltaic Specialist Conf, Las Vegas, USA, pp 842–847

    Google Scholar 

  27. Perrenoud J, Buecheler S, Tiwari AN (2009) Flexible CdTe solar cells and modules: challenges and prospects. In: Proc SPIE Vol. 7409, San Diego, USA, p. 74090 L

    Google Scholar 

  28. Vasko AC, Liu X, Compaan AD (2009) All-sputtered CdS/CdTe solar cells on polyimide. In: Proc of 34th IEEE Photovoltaic Specialist Conf, Philadelphia, USA, pp 001552–001555

    Google Scholar 

  29. Romeo N, Bosio A, Canevari V (1992) A new method to prepare efficient CdTe/CdS thin film solar cells. In: Proc of 11th European Photovoltaic Solar Energy Conf, Montreux, CH, pp 972–974

    Google Scholar 

  30. Perrenoud J (2010) Empa, Switzerland, unpublished results

    Google Scholar 

  31. Pantoja-Enriquez J, Mathew X, Hernandez G, Pal U, Magana C, Acosta DR, Guardian R, Toledo JA, Contreras-Puente G, Chavez-Carvayar JA (2004) CdTe/CdS solar cells on flexible molybdenum substrate. Sol Energy Mater Sol Cells 82:307

    Article  Google Scholar 

  32. Singh VP, McClure JC, Lush GB, Wang W, Wang X, Thompson GW, Clark E (1999) Thin film CdTe-CdS heterojunction solar cells on lightweight metal substrates. Sol Energy Mater Sol Cells 59:145

    Article  Google Scholar 

  33. Romeo A, Khrypunov G, Kurdesau F, Arnold M, Baetzner DL, Zogg H, Tiwari AN (2006) High-efficiency flexible CdTe solar cells on polymer substrates. Sol Energy Mater Sol Cells 90:3407

    Article  Google Scholar 

  34. Matulionis I, Han S, Drayton JA, Price KJ, Compaan AD (2001) Cadmium telluride solar cells on molybdenum substrates. In: MRS Proc, San Francisco, USA, vol 668, pp H8.23.1–H8.23.6

    Google Scholar 

  35. Brog TK (1997) Commercial production of thin film CdTe photovoltaic modules, final report. NTIS, Springfield

    Book  Google Scholar 

  36. Nolan JF, Meyers PV (1993) Fabrication of stable large-area thin-film CdTe photovoltaic modules. Annual subcontracting report, NREL/TP-413-5740

    Google Scholar 

  37. Cunningham D, Davies K, Grammond L, Mopas E, O’Conner N, Rubcich M, Skinner D, Trumbly T (2000) Large area apolloTM module performance and reliability. In: Proc of 28th IEEE Photovoltiac Specialist Conf, pp 13–18

    Google Scholar 

  38. Aramoto T, Tsuji M, Yamamoto T, Nishio T, Veluchamy P, Higuchi H, Kumazawa S, Shibutani J, Nakajima S, Nishiyama Y, Arita T, Hanafusa A, Hibino T, Omura K (2000) Highly efficient large area thin film CdS/CdTe sub-module solar cells. In: Proc of 28th IEEE Photovoltiac Specialist Conf, pp 436–439

    Google Scholar 

  39. Bonnet D (2000) Manufacturing of CSS CdTe solar cells. Thin Solid Films 361–362:547

    Article  Google Scholar 

  40. Abound Solar (2009) Data sheet AB1-2009-05-13

    Google Scholar 

  41. Antec Solar, Data sheet ATF 50

    Google Scholar 

  42. www.calyxo.com/en/manufacturing_company/index.html. Accessed 24 Aug 2010

  43. First Solar (2010) Data sheet FS Series 3™ PD-5-401-03 NA JUN 2010

    Google Scholar 

  44. Schulz DL, Pehnt M, Rose DH, Urgiles E, Cahill AF, Niles DW, Jones KM, Ellingston RJ, Curtis CJ, Ginley DS (1997) CdTe thin films from nanoparticle precursors by spray deposition. Chem Mater 9:889

    Article  Google Scholar 

  45. Roth & Rau Data sheet (2010) www.roth-rau.de/datenbanken_de/photovoltaic/12542138682.pdf. Accessed 25 Aug 2010

  46. Groom N (2009) Abound, U.S. solar startup, takes on first solar, Thomson Reuters, press release 14 Apr 2009

    Google Scholar 

  47. Fischer KH (2009) Produktion von CdTe-Modulen. Energie 2.0, 12 Sept 2009

    Google Scholar 

  48. Perrenoud J, Schaffner B, Buecheler S, Tiwari AN (2011) Fabrication of flexible CdTe solar modules with monolithic cell interconnection. Sol Energy Mater Sol Cells 95:S8

    Article  Google Scholar 

  49. Sze SM (1981) Physics of semiconductor devices. Wiley, New York

    Google Scholar 

  50. Klein A, Saeuberlich F, Spaeth B, Schulmeyer T, Kraft D (2007) Non-stoichiometry and electronic properties of interfaces. J Mater Sci 42:1890

    Article  Google Scholar 

  51. Klenk R (2001) Characterization and modelling of chalcopyrite solar cells. Thin Solid Films 387:135

    Article  Google Scholar 

  52. Hansen GL, Schmit JL, Casselman TN (1990) Preparations of ZnO: Al transparent conducting films by d.c. magnetron sputtering. Thin Solid Films 193–194:721

    Google Scholar 

  53. Koishiyev GT, Sites JR (2009) Impact of sheet resistance on 2-D modeling of thin-film solar cells. Sol Energy Mater Sol Cells 93:350

    Article  Google Scholar 

  54. Gordon RG (1996) Preparation and properties of transparent conductors. In: MRS Proc, San Francisco, USA, pp 419–429

    Google Scholar 

  55. Gordon RG (2000) Criteria for choosing transparent conductors. In: MRS Bulletin, pp 52–5

    Google Scholar 

  56. Gupta A, Compaan AD (2004) All-sputtered 14% CdS/CdTe thin-film solar cell with ZnO: Al transparent conducting oxide. Appl Phys Lett 85:684

    Article  Google Scholar 

  57. Li X, Ribelin R (1998) The effect of high-resistance SnO2 on the CdS/CdTe device performance. In: National Center for Photovoltaics Program Review Meeting, pp 1–8

    Google Scholar 

  58. Takamoto T, Agui T, Kurita H, Ohmori M (1997) Improved junction formation procedure for low temperature deposited CdS/CdTe solar cells. Sol Energy Mater Sol Cells 49:219

    Article  Google Scholar 

  59. Terheggen M, Heinrich H, Kostorz G, Baetzner DL, Romeo A, Tiwari AN (2004) Analysis of bulk and interface phenomena in CdTe/CdS thin-film solar cells. Interface Sci 12:259

    Article  Google Scholar 

  60. Rau U, Schmidt M (2001) Electronic properties of ZnO/CdS/Cu(In, Ga)Se2 solar cells – aspects of heterojunction formation. Thin Solid Films 387:141

    Article  Google Scholar 

  61. Chu T, Chu S (1993) Recent progress in thin-film cadmium telluride solar cells. Prog Photovoltics Res Appl 1:31

    Article  Google Scholar 

  62. Romeo A, Baetzner DL, Zogg H, Tiwari AN (2000) Recrystallization in CdTe/CdS. Thin Solid Films 361–362:420

    Article  Google Scholar 

  63. Wei SH, Zhang SB, Zunger A (2000) First-principles calculation of band offsets, optical bowings, and defects in CdS, CdS, CdTe, and their alloys. J Appl Phys 87:1304

    Article  Google Scholar 

  64. Fritsche J, Schulmeyer T, Kraft D, Thissen A, Klein A, Jaegermann W (2002) Utilization of sputter depth profiling for the determination of band alignment at polycrystalline CdTe/CdS heterointerfaces. Appl Phys Lett 81:2297

    Article  Google Scholar 

  65. Perrenoud J (2010) Empa, Switzerland, unpublished results on TEC15 glass from Pilkington

    Google Scholar 

  66. Tomar MS (1988) Photovoltaic properties of ZnO/p-CdTe thin film heterojunctions. Thin Solid Films 164:295

    Article  Google Scholar 

  67. Wei SH, Zunger A (1998) Calculated natural band offsets of all IIVI and IIIV semiconductors: chemical trends and the role of cation d orbitals. Appl Phys Lett 72:2011

    Article  Google Scholar 

  68. Meyer BK, Poklity A, Farangis B, He Y, Hasselkamp D, Krae-mer T, Wang C (2004) Structural properties and band gap bowing of ZnO1-xSx thin films deposited by reactive sputtering. Appl Phys Lett 85:4929

    Article  Google Scholar 

  69. Contreras-Puente G, Vigil O, Ortega-Lopez M, Morales-Acevedo A, Vidal J, Albor-Aguilera ML (2000) New window materials used as heterojunction partners on CdTe solar cells. Thin Solid Films 361362:378

    Article  Google Scholar 

  70. Perrenoud J, Buecheler S, Kranz L, Fella C, Skarp J, Tiwari AN (2010) Application of ZnO1-xSx as window layer in CdTe solar cells. In: Proc of 35th IEEE Photovoltaic Specialist Conf, Hawaii, USA, pp 000995–001000

    Google Scholar 

  71. Platzer-Bjorkman C, Torndahl T, Abou-Ras D, Malmstrom J, Kessler J, Stolt L (2006) Zn(O, S) buffer layers by atomic layer deposition in Cu(In, Ga)Se2 based thin film solar cells: band alignment and sulfur gradient. J Appl Phys 100:044506

    Article  Google Scholar 

  72. Powell RC, Dorer GL, Reiter NA, McMaster HA, Cox SM, Kahle TD (1999) US patent No 5945163

    Google Scholar 

  73. McCandless BE, Birkmire RW, Buchanan WA, Fields S, Hanket GM (2002) Vapor transport deposition of cadmium telluride films. In: Proc of 29th IEEE Photovoltaic Specialist Conf, New Orleans, USA, pp 547–550

    Google Scholar 

  74. Hanket GM, McCandless BE, Buchanan WA, Fields S, Birkmire RW (2006) Design of a vapor transport deposition process for thin film materials. J Vaccum Sci Technol A 24:1695

    Article  Google Scholar 

  75. First Solar Inc. (2003) News Releases. www.first-solar.com. Accessed 10 Nov 2010

  76. Khrypunov G, Romeo A, Kurdesau F, Baetzner DL, Zogg H, Tiwari AN (2006) Recent developments in evaporated CdTe solar cells. Sol Energy Mater Sol Cells 90:664

    Article  Google Scholar 

  77. Shao M, Fischer A, Grecu D, Jayamaha U, Bykov E, ContrerasPuente G, Bohn RG, Compaan AD (1996) Radio-frequency-magnetron-sputtered CdS/CdTe solar cells on soda-lime glass. Appl Phys Lett 69:3045

    Article  Google Scholar 

  78. Compaan AD, Gupta A, Lee S, Wang S, Drayton J (2004) High efficiency, magnetron sputtered CdS/CdTe solar cells. Sol Energy 77:815, Thin Film PV

    Article  Google Scholar 

  79. Compaan AD, Plotnikov V, Liu X, Paudel N, Kwon D, Wieland K (2010) Thin-film CdTe cells: reducing the CdTe. Thin Solid Films. doi:10.1016/j.tsf.2010.12.179

    Google Scholar 

  80. Irvine SJC, Barrioz V, Lamb D, Jones EW, Rowlands-Jones RL (2008) MOCVD of thin film photovoltaic solar cells-next-generation production technology? J Cryst Growth 310:5198

    Article  Google Scholar 

  81. Basol BM (1988) Electrodeposited CdTe and HgCdTe solar cells. Sol Cells 23:69, Special issue on cadmium telluride

    Article  Google Scholar 

  82. Nakayama N, Matsumoto H, Nakano A, Ikegami S, Uda H, Yamashita T (1980) Screen printed thin-film CdS-CdTe solar-cell. Jpn J Appl Phys 19:703

    Article  Google Scholar 

  83. Matsumoto H, Kuribayashi K, Uda H, Komatsu Y, Nakano A, Ikegami S (1984) Screen-printed CdS/CdTe solar cell of 12.8% efficiency for an active area of 0.78 cm2. Sol Cells 11:367

    Article  Google Scholar 

  84. Albright SP, Ackerman B, Jordan JF (1990) Efficient CdTe CdS solar-cells and modules by spray processing. IEEE Trans Electron Dev 37:434

    Article  Google Scholar 

  85. Curtis CJ, van Hest M, Miedaner A, Hersh A, Leisch J, Ginley DS, Nekuda J (2008) Spray deposition of high quality CuInSe2 and CdTe films. In: Proc of 33 rd IEEE Photovoltiac Specialist Conf, San Diego, USA, pp 1–4

    Google Scholar 

  86. Krishna KV, Dutta V (2003) Spray deposition of CdTe-Te thin films using ethylene-diamine-tetra-acetic acid as a complexing agent in the precursor solution. Sol Energy Mater Sol Cells 80:247

    Article  Google Scholar 

  87. Gur I, Fromer NA, Geier ML, Alivisatos AP (2005) Air-stable all-inorganic nanocrystal solar cells processed from solution. Science 310:462

    Article  Google Scholar 

  88. McCandless BE, Birkmire RW (1991) Analysis of post deposition processing for CdTe/CdS thin film solar cells. Sol Cells 31:527

    Article  Google Scholar 

  89. McCandless BE, Moulton LV, Birkmire RW (1997) Recrystallization and sulfur diffusion in CdCl2-treated CdTe/CdS thin films. Prog Photovoltaics Res Appl 5:249

    Article  Google Scholar 

  90. McCandless BE, Dobson KD (2004) Processing options for CdTe thin film solar cells. Sol Energy 77:839

    Article  Google Scholar 

  91. Zhou TX, Reiter N, Powell RC, Sasala R, Meyers PV (1994) Vapor chloride treatment of polycrystalline CdTe/CdS films. In: Proc of 224th IEEE Photovoltaic Specialist Conf, Waikoloa, USA, pp 103–106

    Google Scholar 

  92. Zhao H, Palekis V, Selvaraj P, Morel DL, Ferekides CS (2002) Vapor chloride treatment studies of CdTe/CdS solar cells. In: Proc of 29th IEEE Photovoltaic Specialist Conf, New Orleans, USA, pp 668–671

    Google Scholar 

  93. Romeo N, Bosio A, Romeo A, Mazzamuto S, Canevari V (2006) High efficiency CdTe/CdS thin film solar cells prepared by treating CdTe films with a Freon gas in substitution of CdCl2. In: Proc of 21st European Photovoltaic Solar Energy Conference, Dresden, Germany, pp 1857–1860

    Google Scholar 

  94. Bosio A, Menossi D, Mazzamuto S, Romeo N (2010) Manufacturing of CdTe thin films PV modules. Thin Solid Films. doi:10.1016/j.tsf.2010.12.137

    Google Scholar 

  95. Romeo A, Buecheler S, Giarola M, Mariotto G, Tiwari AN, Romeo N, Bosio A, Mazzamuto S (2009) Study of CSS- and HVE-CdTe by different recrystallization processes. Thin Solid Films 517:2132

    Article  Google Scholar 

  96. Qu Y, Meyers PV, McCandless BE (1996) HCl vapor post-deposition heat treatment of CdTe/CdS films. In: Proc of 25th IEEE Photovoltaic Specialist Conf, Washington, USA, pp 1013–1016

    Google Scholar 

  97. Terheggen M, Heinrich H, Kostorz G, Romeo A, Baetzner D, Tiwari AN, Bosio A, Romeo N (2003) Structural and chemical interface characterization of CdTe solar cells by transmission electron microscopy. Thin Solid Films 431–432:262

    Article  Google Scholar 

  98. Durose K, Cousins MA, Boyle DS, Beier J, Bonnet D (2002) Grain boundaries and impurities in CdTe/CdS solar cells. Thin Solid Films 403–404:396

    Article  Google Scholar 

  99. Chiarotti G (1993) 1.6 Crystal structures and bulk lattice parameters of materials quoted in the volume. SpringerMaterials – The Landolt-Brnstein Database. http://www.springermaterials.com. doi:

  100. Nunoue S-Y, Hemmi T, Kato E (1990) Mass spectrometric study of the phase boundaries of the CdS-CdTe system. J Electrochem Soc 137:1248

    Article  Google Scholar 

  101. Jensen DG, McCandless BE, Birkmire RW (1996) Thin film cadmium telluride-cadmium sulfide alloys and devices. In: Conference record of the twenty fifth IEEE photovoltaic specialists conference, Washington, DC, 13–17 May 1996. pp 773–776

    Google Scholar 

  102. Hofmann DM, Omling P, Grimmeiss HG, Meyer BK, Benz KW, Sinerius D (1992) Identification of the chlorine A-center in CdTe. Phys Rev B 45:6247

    Article  Google Scholar 

  103. Valdna V, Buschmann F, Mellikov E (1996) Conductivity conversion in CdTe layers. J Cryst Growth 161:164

    Article  Google Scholar 

  104. Marfaing Y (2001) Impurity doping and compensation mechanisms in CdTe. Thin Solid Films 387:123

    Article  Google Scholar 

  105. Zhao H, Farah A, Morel D, Ferekides CS (2009) The effect of impurities on the doping and VOC of CdTe/CdS thin film solar cells. Thin Solid Films 517:2365

    Article  Google Scholar 

  106. McCandless BE, Buchanan WA (2008) High throughput processing of CdTe/CdS solar cells with thin absorber layers. In: Proc of 33 rd IEEE Photovoltaic Specialist Conf, San Diego, USA, pp 1–6

    Google Scholar 

  107. Akimoto K, Okuyama H, Ikeda M, Mori Y (1992) Isoelectronic oxygen in II-VI semiconductors. Appl Phys Lett 60:91

    Article  Google Scholar 

  108. Ringel SA, Smith AW, MacDougal MH, Rohatgi A (1991) The effects of CdCl2 on the electronic properties of molecular-beam epitaxially grown CdTe/CdS heterojunction solar cells. J Appl Phys 70:881

    Article  Google Scholar 

  109. Burgelman M, Nollet P, Degrave S (1999) Electronic behaviour of thin-film CdTe solar cells. Appl Phys A 69:149

    Article  Google Scholar 

  110. Versluys J, Clauws P, Nollet P, Degrave S, Burgelman M (2003) DLTS and admittance measurements on CdS/CdTe solar cells. Thin Solid Films 431:148

    Article  Google Scholar 

  111. Seymour FH, Kaydanov V, Ohno TR (2006) Simulated admittance spectroscopy measurements of high concentration deep level defects in CdTe thin-film solar cells. J Appl Phys 100:033710

    Article  Google Scholar 

  112. Seto JYW (1975) The electrical properties of polycrystalline silicon films. J Appl Phys 46:5247

    Article  Google Scholar 

  113. Werner J, Jantsch W, Froehner KH, Queisser HJ (1982) Transport across silicon grain boundaries. In: Grain Boundaries in Semiconductors. Elsevier Science

    Google Scholar 

  114. Visoly-Fisher I, Cohen SR, Ruzin A, Cahen D (2004) How polycrystalline devices can outperform single-crystal ones: thin film CdTe/CdS solar cells. Adv Mater 16:879

    Article  Google Scholar 

  115. Visoly-Fisher I, Cohen S, Gartsman K, Ruzin A, Cahen D (2006) Understanding the beneficial role of grain boundaries in polycrystalline solar cells from single-grain-boundary scanning probe microscopy. Adv Funct Mater 16:649

    Article  Google Scholar 

  116. Zweibel K (2010) The impact of tellurium supply on cadmium telluride photovoltaics. Science 328:699

    Article  Google Scholar 

  117. Gupta A, Parikh V, Compaan AD (2006) High efficiency ultra-thin sputtered CdTe solar cells. Sol Energy Mater Sol Cells 90:2263

    Article  Google Scholar 

  118. Sites J, Pan J (2007) Strategies to increase CdTe solar-cell voltage. Thin Solid Films 515:6099

    Article  Google Scholar 

  119. Desnica UV (1998) Doping limits in II-VI compounds – challenges, problems and solutions. Prog Cryst Growth Charact Mater 36:291

    Article  Google Scholar 

  120. Panchuk O, Fochuk P (2010) Doping. In: Triboulet R, Siffert P (eds) CdTe and related compounds; physics, defects, hetero- and nano-structures, crystal growth, surfaces and applications. Elsevier, Amsterdam, pp 309–362

    Google Scholar 

  121. Fochuk P, Grill R, Panchuk O (2006) The nature of point defects in CdTe. J Electron Mater 35:1354

    Article  Google Scholar 

  122. Lyahovitskaya V, Chernyak L, Greenberg J, Kaplan L, Cahen D (2000) n- and p-type post-growth self-doping of CdTe single crystals. J Cryst Growth 214–215:1155

    Article  Google Scholar 

  123. Berding MA (1999) Annealing conditions for intrinsic CdTe. Appl Phys Lett 74:552

    Article  Google Scholar 

  124. Grecu D, Compaan AD, Young D, Jayamaha U, Rose DH (2000) Photoluminescence of Cu-doped CdTe and related stability issues in CdS/CdTe solar cells. J Appl Phys 88:2490

    Article  Google Scholar 

  125. Gessert TA, Metzger WK, Dippo P, Asher SE, Dhere RG, Young MR (2009) Dependence of carrier lifetime on Cu-contacting temperature and ZnTe: Cu thickness in CdS/CdTe thin film solar cells. Thin Solid Films 517:2370

    Article  Google Scholar 

  126. Molva E, Chamonal JP, Pautrat JL (1982) Shallow acceptors in cadmium telluride. Physica Status Solidi B 109:635

    Article  Google Scholar 

  127. Bhargava RN (1982) The role of impurities in refined ZnSe and other II-VI semiconductors. J Cryst Growth 59:15

    Article  Google Scholar 

  128. Molva E, Chamonal JP, Milchberg G, Saminadayar K, Pajot B, Neu G (1982) Excited states of Ag and Cu acceptors in CdTe. Solid State Commun 44:351

    Article  Google Scholar 

  129. Molva E, Francou JM, Pautrat JL, Saminadayar K, Dang LS (1984) Electrical and optical properties of Au in cadmium telluride. J Appl Phys 56:2241

    Article  Google Scholar 

  130. Francou JM, Saminadayar K, Pautrat JL (1990) Shallow donors in CdTe. Phys Rev B 41:12035

    Article  Google Scholar 

  131. Stadler W, Hofmann DM, Alt HC, Muschik T, Meyer BK, Weigel E, Muller-Vogt G, Salk M, Rupp E, Benz KW (1995) Optical investigations of defects in Cd1–xZn x Te. Phys Rev B 51:10619

    Article  Google Scholar 

  132. Molva E, Saminadayar K, Pautrat JL, Ligeon E (1983) Photoluminescence studies in N, P, As implanted cadmium telluride. Solid State Commun 48:955

    Article  Google Scholar 

  133. Nikonyuk ES, Zakharuk ZI, Shlyakhovyi VL, Fochuk PM, Rarenko AI (2001) Mechanism of incorporation of an antimony impurity into cadmium telluride crystals. J Semicond 35:405

    Article  Google Scholar 

  134. Wei SH, Zhang SB (2002) Chemical trends of defect formation and doping limit in II-VI semiconductors: the case of CdTe. Phys Rev B 66:155211

    Article  Google Scholar 

  135. Chin KK (2010) p-Doping limit and donor compensation in CdTe poly-crystalline thin film solar cells. Sol Energy Mater Sol Cells 94:1627

    Article  Google Scholar 

  136. Vigil-Galn O, Brown M, Ruiz CM, Vidal-Borbolla MA, Ramrez-Bon R, Snchez-Meza E, Tufio-Velzquez M, Estela-Calixto M, Compaan AD, Contreras-Puente G (2008) On the doping problem of CdTe films: the bismuth case. Thin Solid Films 516:7013

    Article  Google Scholar 

  137. Proskuryakov YY, Durose K, Al Turkestani MK, Mora-Sero I, Garcia-Belmonte G, Fabregat-Santiago F, Bisquert J, Barrioz V, Lamb D, Irvine SJC, Jones EW (2009) Impedance spectroscopy of thin-film CdTe/CdS solar cells under varied illumination. J Appl Phys 106:044507

    Article  Google Scholar 

  138. Emziane M, Durose K, Halliday DP, Bosio A, Romeo N (2005) Efficiency improvement in thin-film solar cell devices with oxygen-containing absorber layer. Appl Phys Lett 87:261901

    Article  Google Scholar 

  139. Niemegeers A, Burgelman M (1997) Effects of the Au/CdTe back contact on IV and CV characteristics of Au/CdTe/CdS/TCO solar cells. J Appl Phys 81:2881

    Article  Google Scholar 

  140. Demtsu SH, Sites JR (2006) Effect of back-contact barrier on thin-film CdTe solar cells. Thin Solid Films 510:320

    Article  Google Scholar 

  141. Danaher WJ, Lyons LE, Marychurch M, Morris GC (1986) Chemical etching of crystal and thin film cadmium telluride. Appl Surf Sci 27:338

    Article  Google Scholar 

  142. Sarlund J, Ritala M, Leskelae M, Siponmaa E, Zilliacus R (1996) Characterization of etching procedure in preparation of CdTe solar cells. Sol Energy Mater Sol Cells 44:177

    Article  Google Scholar 

  143. Baetzner DL, Romeo A, Zogg H, Wendt R, Tiwari AN (2001) Development of efficient and stable back contacts on CdTe/CdS solar cells. Thin Solid Films 387:151

    Article  Google Scholar 

  144. Baetzner DL, Wendt R, Romeo A, Zogg H, Tiwari AN (2000) A study of the back contacts on CdTe/CdS solar cells. Thin Solid Films 361–362:463

    Article  Google Scholar 

  145. Romeo N, Bosio A, Tedeschi R, Romeo A, Canevari V (1999) Highly efficient and stable CdTe/CdS thin film solar cell. Sol Energy Mater Sol Cells 58:209

    Article  Google Scholar 

  146. Gessert TA, Sheldon P, Li X, Dunlavy D, Niles D, Sasala R, Albright S, Zadler B (1997) Studies of ZnTe back contacts to CdS/CdTe solar cells. In: Proc of 26th IEEE Photovoltaic Specialist Conf, Aualein, USA, pp 419–422

    Google Scholar 

  147. Yan Y, Jones KM, Wu X, Al-Jassim MM (2003) Formation of Cd x Hg1–xTe layers on CdTe after NP-etching and HgTe-graphite pasting. In: MRS Proc, San Francisco, USA, vol 763

    Google Scholar 

  148. Duke S, Miles RW, Pande P, Spoor S, Ghosh B, Datta PK, Carter MJ, Hill R (1996) Characterisation of in-situ thermally evaporated CdS/CdTe thin film solar cells with NiP back contacts. J Cryst Growth 159:916

    Article  Google Scholar 

  149. Romeo N, Bosio A, Canevari V, Podest A (2004) Recent progress on CdTe/CdS thin film solar cells. Sol Energy 77:795

    Article  Google Scholar 

  150. Leimkhler G, Bartelt O, Reineke-Koch R (2001) Electrodeposited antimony and antimony telluride as back contact interlayer for cadmium telluride thin film solar cells. In: Proc of 17th European Photovoltaic Solar Energy Conf, Munich, Germany, pp 1169–1171

    Google Scholar 

  151. Kraft D, Spaeth B, Thissen A, Klein A, Jeaegermann W (2003) Chemical and electronic properties of metal/Sb2Te3/CdTe contacts for CdTe thin film solar cells studied by photoelectron spectroscopy. In: MRS Proc, San Franscico, USA, pp 450–453

    Google Scholar 

  152. Baetzner DL, Romeo A, Terheggen M, Doebeli M, Zogg H, Tiwari AN (2004) Stability aspects in CdTe/CdS solar cells. Thin Solid Films 451–452:536

    Article  Google Scholar 

  153. Rioux D, Niles DW, Hoechst H (1993) ZnTe – a potential interlayer to form low-resistance back contacts in CdS/CdTe solar cells. J Appl Phys 73:8381

    Article  Google Scholar 

  154. Spaeth B, Fritsche J, Klein A, Jaegermann W (2007) Nitrogen doping of ZnTe and its influence on CdTe/ZnTe interfaces. Appl Phys Lett 90:062112

    Article  Google Scholar 

  155. Gessert TA, Mason AR, Reedy RC, Matson R, Coutts TJ, Sheldon P (1995) Development of rf sputtered, Cu-doped ZnTe for use as a contact interface layer to p-CdTe. J Electron Mater 24:1443

    Article  Google Scholar 

  156. Tang J, Mao D, Feng L, Song W, Trefny J (1996) The properties and optimization of ZnTe:Cu back contacts on CdTe/CdS thin film solar cells. In: Proc of 25th IEEE Photovoltaic Specialist Conf, Washington, USA, pp 925–928

    Google Scholar 

  157. Tiwari AN, Khrypunov G, Kurdzesau F, Baetzner D, Romeo A, Zogg H (2004) CdTe solar cell in a novel configuration. Prog Photovoltaics Res Appl 12:33

    Article  Google Scholar 

  158. Dobson KD, Visoly-Fisher I, Hodes G, Cahen D (2000) Stability of CdTe/CdS thin-film solar cells. Sol Energy Mater Sol Cells 62:295

    Article  Google Scholar 

  159. Enzenroth RA, Barth KL, Sampath WS, Manivannan V, Kirkpatrick AT, Noronha P (2009) Stable Cu-based back contacts for CdTe thin film photovoltaic devices. J Sol Energy Eng 131:021012

    Article  Google Scholar 

  160. Meyers P (1988) AMETEKS CdTe solar module development program. Sol Cells 24:35

    Article  Google Scholar 

  161. Romeo A, Khrypunov G, Galassini S, Zogg H, Tiwari AN (2007) Bifacial configurations for CdTe solar cells. Sol Energy Mater Sol Cells 91:1388

    Article  Google Scholar 

  162. Fthenakis VM, Alsema E (2006) Photovoltaics energy payback times, greenhouse gas emissions and external costs: 2004 early 2005 status. Prog Photovoltaics Res Appl 14:275

    Article  Google Scholar 

  163. Raugei M, Bargigli S, Ulgiati S (2007) Life cycle assessment and energy pay-back time of advanced photovoltaic modules: CdTe and CIS compared to poly-Si. Energy 32:1310

    Article  Google Scholar 

  164. Fthenakis VM, Raugei M, Held M (2009) Update of environmental impacts and energy payback times of photovoltaics. In: Proc of 24th European Photovoltaic Solar Energy Conf, Hamburg, Germany, p 6DO.10.5

    Google Scholar 

  165. Fthenakis VM, Kim HC, Alsema E (2008) Emission from photovoltaic life cycles. Environ Sci Technol 42:2168

    Article  Google Scholar 

  166. Georg MW (2010) Tellurium in U.S. Geological Survey, mineral commodity summaries, Jan 2010

    Google Scholar 

  167. Green MA (2006) Improved estimates for Te and Se availability from Cu anode slimes and recent price trends. Prog Photovoltaics Res Appl 14:743

    Article  Google Scholar 

  168. Lifton J (2009) The tellurium supply conjecture, published in Resource Investor on 9 Jul 2009

    Google Scholar 

  169. Selenium and Tellurium in 2008 Minerals Yearbook of USGS, 2009

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephan Buecheler .

Editor information

Editors and Affiliations

Abbreviations

ALD

Atomic layer deposition

APVTD

Atmospheric pressure vapor transport deposition

AR

Antireflection

ASG

Aluminosilicate glass

AZO

Aluminum doped zinc oxide

BI

Battelle-Institute e.V

BM

Bromine methanol

BSG

Borosilicate glass

CBD

Chemical bath deposition

CIGS

Copper indium gallium diselenide

CNRS

French National Center for Scientific Research

CSS

Close space sublimation

CTO

Cadmium stannate

CVD

Chemical vapor deposition

ED

Electrodeposition

EH&S

Environmental, health hazard, and safety issues

EQE

External quantum efficiency

ETHZ

Swiss Federal Institute of Technology Zurich

FF

Fill factor

FTO

Fluorine doped tin oxide

GBs

Grain boundaries

HRT

Highly resistive and transparent oxide

HTVPD

High-temperature vapor phase deposition

HVE

High vacuum deposition

IEC

Institute for Energy Conversion, University of Delaware

IQE

Internal quantum efficiency

ITO

Tin doped indium oxide

Jsc

Short circuit current density

NP

Nitric-phosphoric acid

NREL

National renewable energy laboratory

PI

Polyimide

PV

Photovoltaic

R

Reflectance

R&D

Research and Development

SEM

Scanning electron microscopy

SLG

Soda-lime glass

STC

Standard test condition

T

Transmittance

TCO

Transparent conductive oxide

UNAM

Centro de Investigacin en Energa, Solar Materials Department, Temixco, Morelos 62

VOC

Open circuit voltage

VTD

Vapor transport deposition

XRD

X-ray diffraction

ZTO

Zinc stannate

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this entry

Cite this entry

Buecheler, S., Kranz, L., Perrenoud, J., Tiwari, A.N. (2013). CdTe Solar Cells. In: Richter, C., Lincot, D., Gueymard, C.A. (eds) Solar Energy. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5806-7_463

Download citation

Publish with us

Policies and ethics