Skip to main content

Silicon Solar Cells , Crystalline

  • Reference work entry
  • First Online:
Solar Energy

Definition

Solar cells are sources of electrical energy when they are illuminated by solar radiations . They deliver to a load a photocurrent and a photovoltage . First used for space applications, solar cells were progressively taken into account for terrestrial applications. The main problems to solve are, today, the photovoltaic energy cost which is too high and the conversion efficiency which is limited. Most of the cells are based on a p–n junction made with a p-type semiconductor and an n-type semiconductor. When both materials are the same, the cell is based on a homojunction. When the materials are different, the cell is based on a heterojunction. One silicon cell, 15.6 × 15.6 cm2, can deliver 7–9 A under ∼0.6 V only, and for this reason, the cells are connected in modules in order to provide a substantial electrical power (about 100–250 W). The semiconductor silicon is known as an extremely pure material; 9 N purity level is...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 449.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Antireflection coating layer (ARC):

Layer deposited on the illuminated surface of a cell which reduces the reflection of the light.

Dislocations:

Lack or additional line of atoms in the crystal.

Gettering process:

Extraction of unwanted impurities and trapping in a region of a wafer which does not contribute to the photocurrent.

Grain boundary (GB):

Border zone of two adjacent crystalline grains.

Homojunction (heterojunction):

Part of a semiconductor diode which separates a p-type region from an n-type one made with the same material (in a heterojunction, the materials are different).

Minority carrier lifetime τ and diffusion length L:

Duration and distance run by an electron in excess (generated by the sunlight) in p-type silicon or by a hole in excess in n-type silicon.

Minority carrier diffusion length L:

Distance run by carriers in excess.

Multicrystalline silicon:

Large grained polycrystalline material, a few mm to 1 cm in size.

Passivation:

Mechanism which reduces the electrical activity of crystallographic defects, of surfaces, of interfaces, and of unwanted impurities.

Precipitates:

Agglomeration of impurity atoms within the crystal.

Solar cell conversion efficiency η:

Ratio of the electrical power output to the sunlight power input.

Texturization:

Chemical or physical technique which increases the roughness of the surface in order to reduce the light reflection and the diffusion.

Wafer:

Trench of silicon cut out from an ingot, ∼200 μm in thickness.

Bibliography

Primary Literature

  1. Hunt LP (1990) Silicon precursors: their manufacture and properties. In: O’Mara WC, Herring RB, Hunt LP (eds) Handbook of semiconductor silicon technology. William Andrew/Noyes, Park Ridge, pp 1–32

    Google Scholar 

  2. Rogers LC (1990) Polysilicon preparation. In: O’Mara WC, Herring RB, Hunt LP (eds) Handbook of semiconductor silicon technology. William Andrew Publishing/Noyes, Park Ridge, pp 33–933

    Google Scholar 

  3. Bischoff F (1954) German Patents n° 1102117 and 1140549, filed May 18, USP 3146123

    Google Scholar 

  4. Weihaus D, Schlimbeck E, Hesse K, Dornberger E (2005) Pilot production of granular polysilicon from trichlorosilane using a fluidized bed reactor. In: 20th EUPVSEC, Barcelona, Spain, pp 564–568

    Google Scholar 

  5. Cecarolli B, Lohne O (2003) Solar grade silicon feedstock. In: Luque A, Hegedus S (eds) Handbook of photovoltaic science and engineering. Wiley, Sussex, pp 153–204

    Google Scholar 

  6. Hesse K, Schindlbeck E, Dornberger E, Fischer M (2009) Status and development of solar grade silicon feedstock. In: 24th EUPVSEC, Hamburg, Germany, p 883

    Google Scholar 

  7. Joyce DB, Khattak CP, Schmid F (2001) Segregation steps applied to the purification of metallurgical silicon. In: 11th NREL workshop on crystalline silicon solar cell materials and processes, Estes Park (CO), USA, p 177

    Google Scholar 

  8. Di Sabatino M, Ǿvrelid EJ, Kopecek R, Binetti S, Mihailetchi VD, Geerligs L, Vaenes AN (2009) FoXy-development of solar grade silicon feedstock for crystalline wafers and cells by purification and crystallisation. In: 3rd international workshop on crystalline silicon solar cells, Trondheim, Norway

    Google Scholar 

  9. Enebakk E, Tranell GM, Tronstad R (2003) Calcium-silicate based slag for phosphorus and boron removal from molten silicon, patent PCT/NO03/00091

    Google Scholar 

  10. Amouroux J, Morvan D (1981) Production of high-purity silicon ingot. US Patent 4399116

    Google Scholar 

  11. Yuge N, Baba H, Sakaguchi Y, Nishikawa K, Terashima H, Aratami F (1994) Purification of metallurgical silicon up to solar grade. Sol Energ Mat Sol Cells 34:243–250

    Article  Google Scholar 

  12. Naomichi N, Misamichi A, Kazuhiro H, Hiroyuki B, Kenkichi Y, Yasuhiko S, Yoshihide K (1998) Purification of silicon for solar battery and apparatus, Japanese patent JP10273311

    Google Scholar 

  13. Nakamura N, Baba H, Sakaguchi S, Kato Y (2004) Boron removal in molten silicon by a steam-added plasma melting method. Mater Trans 45:858–864

    Article  Google Scholar 

  14. Alemany C, Trassy C, Pateyron B, Li KI, Delannoy Y (2002) Refining of metallurgical-grade silicon by inductive plasma. Sol Energ Mat Sol Cells 72:41–48

    Article  Google Scholar 

  15. Delannoy Y, Alemany C, Li KI, Proulx P, Trassy C (2002) Plasma-refining process to provide solar-grade silicon. Sol Energ Mat Sol Cells 72:69–75

    Article  Google Scholar 

  16. Einhaus R, Kraiem J, Cocco F, Caratini Y, Bernou D, Sarti D, Rey G, Monna R, Trassy C, Degoulange J, Delannoy Y, Martinuzzi S, Périchaud I (2006) PHOTOSIL-simplified production of solar silicon from metallurgical silicon. In: 21st EUPVSEC, Dresden, Germany, p 580

    Google Scholar 

  17. Pizzini S, Acciari M, Binetti S (2005) From electronic grade to solar grade silicon: chances and challenges in photovoltaics. Phys Stat Sol (a) 15:1928–1942

    Google Scholar 

  18. Peter K, Kopecek R, Soiland A, Enebakk E (2008) Future potential for SoG-Si feedstock from the metallurgical route. In: 23 rd EUPVSEC, Valencia, Spain, Sept 2008, pp 947–950

    Google Scholar 

  19. Hoffman V, Petter K, Djordjevic-Reiss J, Häckedal JT, Tronstad R, Vlasenko T, Buchovskaja I, Beringov S, Bauer M (2008) First results on industrialization of ELKEM solar silicon at Pillar JSC and Q-Cells. In: 23 rd EUPVSEC, Valencia, Spain, p 1117

    Google Scholar 

  20. Prettyman K, Pfeiffer G, Krause R, Hovel H (2009) Solar cell production using UMG silicon. In: 24th EUPVSEC, Hamburg, Germany, p 1333

    Google Scholar 

  21. Dietze W, Keller K, Mühlbauer A (1981) Float zone silicon in crystals. In: Grabmaier J (ed) Crystals, growth, properties, and applications. Springer, Berlin/Heidelbreg, pp 1–42

    Google Scholar 

  22. Pfann WG (1952) Principle of zone melting. Trans AIME 194:747

    Google Scholar 

  23. Theuerer H (1952) USP 3060123 filed Dec 17

    Google Scholar 

  24. Emeis RZ (1954) Tiegelfreies ziehen von silicium einkristallen, Naturforsch. 9a, 67

    Google Scholar 

  25. Czochralski JZ (1918) Phys Chem 92:219

    Google Scholar 

  26. Teal GT, Little JB (1950) Phys Rev 78:657

    Google Scholar 

  27. O’ Mara WC (1990) Oxygen, carbon and nitrogen in silicon. In: O’Mara WC, Herring RB, Hunt LP (eds) Handbook of semiconductor silicon technology. William Andrew Publishing/Noyes, Park Ridge, pp 451–537

    Google Scholar 

  28. Dietl J, Helmreich D, Sirtl E (1981) Solar silicon. In: Grabmaier J (ed) Crystals, growth, properties, and applications. Springer, Berlin, pp 43–107

    Google Scholar 

  29. Schmid F, Basaran M, Khattak CP (1980) Purification of metallurgical silicon by slagging and segregation. In: 3rd EUPVSEC, Berlin, Germany, p 252

    Google Scholar 

  30. Le Quang N, Gauthier M, Pihan E, Nichiporuk O, Madon F, Goaer G (2007) 22nd EUPVSEC Milan, p 943–947

    Google Scholar 

  31. Kraiem J, Einhaus R, Lissalde F, Dubois S, Enjalbert N, Drevet B, Servant F, Camel D (2008) Innovative crystallisation on mc-Si ingots from different types of silicon feedstock. In: 23rd EUPVSEC, Valencia, Spain, p1071

    Google Scholar 

  32. Kawamura R, Sasatani K, Onizuka T, Kaneko K (1994) Continuous growth of mc-Si ingots by cold crucible technique. In: 24th IEEE PVSC, vol 2, Waikola, Hawai, USA, pp 1652–55

    Google Scholar 

  33. Landaud D (2006) Continuous growth of mc-Si ingot in a cold crucible. Photon Int 12:38

    Google Scholar 

  34. Dour G, Erhet H, Laugier A, Sarti D, Garnier M, Durand F (1998) Continuous solidification of mc-Si from an inductive cold crucible. J Cryst Growth 193(1–2):230

    Article  Google Scholar 

  35. Weber B, Bierwisch C, Kübler R, Kleer G (2008) Investigation on the sawing of solar silicon by application of wires of 100 μm diameter. In: 23rd EUPVSEC, Valencia, p 1285

    Google Scholar 

  36. Kondo Y, Watanabe N, Ide D, Matsuki T, Takato H, Sakata I (2008) Characterization of mc-Si wafers for solar cell applications sliced with a fixed abrasive wire. In: 23rd EUPVSEC, Valencia, p 1297

    Google Scholar 

  37. Dross F, Milhe A, Robbelein J, Gordon I, Bouchard PO, Beaucarne G, Poortsmans J (2008) SLIM-CUT a kerf-loss free method for wafering 50 μm thick crystalline Si wafers based on stress-induced lift-off. In: 23rd EUPVSEC, Valencia, Spain, p 127

    Google Scholar 

  38. Ciszek J (1985) Crystallographic growth forms of Si on a free melt surface. J Electrochem Soc 132:422

    Article  Google Scholar 

  39. Wald F (1981) Crystal growth of silicon ribbons for terrestrial solar cells by the EFG method. In: Grabmaier J (ed) Silicon. Springer, Berlin, p 147

    Chapter  Google Scholar 

  40. Kalejs JP (2002) Silicon ribbons and foils-state of the art. Sol Energ Mat Sol Cells 72:139

    Article  Google Scholar 

  41. Mosel F, Birkmann B, Müller M, Westram I, Seidl A (2009) Growth conditions and material properties of EFG ribbon silicon. In: 3rd international workshop on crystalline silicon solar cells, SINTEF/NTU, Trondheim

    Google Scholar 

  42. Ciszek TF, Hurd LL, Schietzelt MJ (1982) Filament materials for edge-supported pulling of silicon sheet crystals. J Electrochem Soc 19:2838

    Article  Google Scholar 

  43. Ro A, Kim DS, Nakayashiki K, Yelundur V, Rounsainville B (2004) High efficiency solar cells on edge defined film def grown 18.2% and string ribbon 17.8% by rapid thermal processing. Appl Phys Lett 84:145

    Article  Google Scholar 

  44. Hayes JR, Zhang X, Meier DL, Maahjan S (2001) Origins of defect structures in dendritic web silicon. J Cryst Growth 233:451

    Article  Google Scholar 

  45. Nakayashiki K, Rounsainville B, Yelundur V, Kim DS, Rohatgi A, Clarkphelps R, Hanoka JJ (2006) Fabrication and analysis of high-efficiency string ribbon Si solar cells. Solid-State Electron 50:1406

    Article  Google Scholar 

  46. Wallace R, Hanoka JJ, Rohatgi A, Grotty G, SOLMAT 48: 179

    Google Scholar 

  47. Seren H, Kaes M, Hahn G, Gutjahr A, Burgers AR, Schönecker A (2007) Efficiency potential of RGS Si from current R&D production. In: 22nd EUPVSEC, Milan, Italy, p 854

    Google Scholar 

  48. Focsa A, Slaoui A, Schmitt SB, Jolivet E, Belouet C (2009) Gettering effect and FG annealing on thin RST Si solar cells. In: 24th EUPVSEC, Hamburg, Germany, p 1887

    Google Scholar 

  49. Yamatsugu H, Goma S, Kidoguchi S, Oishi R, Yoshida K, Yano K, Taniguchi H (2008) Characteristics of CDS silicon wafers. In: 23rd EUPVSEC, Valencia, Spain

    Google Scholar 

  50. Eltran YY (2000) SOI-epi and SCLIPS by epitaxial layer transfer from porous Si. In: Parthulik V, Canham L (eds) Proceedings of the 2nd international conference on porous semiconductors – science and technology, Technical University of Valencia, Valencia

    Google Scholar 

  51. Bergmann RB, Werner JH (2002) The future of crystalline silicon films on foreign substrates. Thin Solid Films 403–404:162

    Article  Google Scholar 

  52. Brendel R (2004) Thin-film crystalline silicon mini-modules using porous Si for layer transfer. Solar Energy 77:969

    Article  Google Scholar 

  53. Solanki CS, Bilyalov RR, Poortmans J (2004) Porous silicon layer transfer processes for solar cells. Sol Energ Mat Sol Cells 83:101

    Article  Google Scholar 

  54. Fave A, Quoizola S, Kraiem J, Kaminski A, Lemiti M, Laugier A (2004) Comparative study of LPE and VPE silicon thin film on porous sacrificial layer. Thin Solid Films 451–452:308

    Article  Google Scholar 

  55. Kraiem J, Papet P, Nichiporuk O, Amtablian S, Lelievre J-F, Quoizola S, Fave A, Kaminski A, Ribeyron P-J, Jaussaud C, Lemiti M (2006) ELIT Process: epitaxial layers for interdigitated back contacts solar cells transferred. In: 4th World conference on photovoltaic energy conversion, Waikoloa, Hawaii, USA, p 1126

    Google Scholar 

  56. Duffar Th (2010) Comprehensive review on grain boundary and twin structures in bulk photovoltaic silicon. Recent Res Dev Cryst Growth 5:61–11

    Google Scholar 

  57. Chen J, Sekikuchi T, Ito S, Yang D (2008) Carrier recombination activity and structural properties of small angle grain boundaries in mc-Si. Solid State Phenomena 131–133:9

    Article  Google Scholar 

  58. Scott McHugo A, Thompson AC, Mohammed A, Lamble G, Périchaud I, Martinuzzi S, Werne M, Koch W (2001) Nanometer scale metal precipitates in mc-Si solar cells. J Appl Phys 89:4282

    Article  Google Scholar 

  59. Arafume K, Sasaki T, Wakabayashi F, Terada Y, Oshida Y, Yamaguchi M (2006) Study on defects and impurities in cast-grown polycrystalline silicon substrates for dollar cells. Physica B 376–377:236

    Article  Google Scholar 

  60. Dubois S, Palais O, Pasquinelli M, Martinuzzi S, Ribeyron P-J, Enjalbert N (2007) Effect of intentional iron contamination on multicrystalline silicon solar cell properties. J Appl Phys 102:083525

    Article  Google Scholar 

  61. Martinuzzi S, Pizzini S (1994) Large grain polysilicon substrates for solar cells. In: Nijs J (ed) Advanced silicon and semiconducting silicon alloy based materials and devices. IOP, Bristol, pp 323–357

    Google Scholar 

  62. Kaminski A, Breitenstein O, Boyeaux JP, Rakotaniaina P, Laugier A (2004) J Phys Condens Matter 16:S9

    Google Scholar 

  63. Sopori B, Nilson T, Mclure M (1981) Diodes arrays for photovoltaic characterization of silicon substrates. J Electrochem Soc 128:215

    Article  Google Scholar 

  64. El Ghitani H, Martinuzzi S (1989) Influence of dislocations on electrical properties of polycrystalline silicon. J Appl Phys 66:1717

    Article  Google Scholar 

  65. El Ghitani H, Martinuzzi S (1989) Influence of dislocations on electrical properties of polycrystalline silicon experimental. J Appl Phys 66:1723

    Google Scholar 

  66. Kieliba T, Riepe S, Warta W (2006) Effect of dislocations on minority carrier diffusion length in practical solar cells. J Appl Phys 100:063706

    Google Scholar 

  67. Kieliba T, Riepe S, Warta W (2006) Effect of dislocations on open circuit voltage in crystalline silicon solar cells. J Appl Phys 100:093708

    Google Scholar 

  68. Mcdonald D, Cuevas A, Kinomura NY, Geerligs LJ (2005) Transition-metal profiles in a multicrystalline silicon ingot. J Appl Phys 97:033523

    Article  Google Scholar 

  69. Martinuzzi S, Palais O, Perichaud I (2007) Segregation phenomena in large-size cast multicrystalline ingots. Sol Ener Mat Sol Cells 91:1172

    Article  Google Scholar 

  70. Hanoka J (1986) Hydrogen passivation of polycrystalline silicon. In: Bowman RC (ed) Hydrogen in disordered and amorphous solids. Plenum, New York, p 81

    Chapter  Google Scholar 

  71. Seifert W, Morgenstern G, Kittler M (1993) Influence of dislocation density on recombination at grain boundaries in mc-Si. Semicond Sci Technol 9:1687

    Article  Google Scholar 

  72. Périchaud I, Martinuzzi S (1998) Recombination strength at intra and intergrain defects in mc-Si investigated by low temperature LBIC scan maps. In: Proceedings of MRS spring meeting, vol 510, San Francisco USA, p 633

    Google Scholar 

  73. Martinuzzi S, Gauthier M, Barakel D, Périchaud I, Le Quang N, Palais O, Goaer G (2007) Minority carrier bulk lifetimes through a large multicrystalline silicon ingot and related solar cell properties. Eur Phys J Appl Phys 40:83

    Article  Google Scholar 

  74. Dube C, Hanoka J (1984) Hydrogen passivation of defects in silicon. Appl Phys Lett 45:1135

    Article  Google Scholar 

  75. Hahn G, Sontag D, Seren S, Schönecker A, Burgers A, Stavola M (2004) Hydrogenation of mc-Si: the story continues. In: 19th EPVSEC, Paris, p 861

    Google Scholar 

  76. Pearton SJ, Corbett JW, Stavola M (1992) Hydrogen in crystalline semiconductors. Springer, Berlin

    Book  Google Scholar 

  77. Narayan S, Wenham SR, Green MA (1986) High efficiency polycrystalline silicon solar cells using phosphorus pre-treatment. Appl Phys Lett 48:873

    Article  Google Scholar 

  78. Périchaud I, Martinuzzi S, Stemmer M (1991) Additivity of phosphorus gettering and hydrogenation improvements in multicrystalline silicon cells. In: 22nd IEEE-PVSC, Las Vegas, p 877

    Google Scholar 

  79. Périchaud I, Martinuzzi S (1992) Effet Getter dans des plaquettes de silicium multicristallin par diffusion de phosphore : J de Phys III, 2:313

    Google Scholar 

  80. Périchaud I (2002) Gettering of impurities in solar silicon. Sol Energ Mat Sol Cells 72:315

    Article  Google Scholar 

  81. Joshi SM, Ulrich M, Gösele UM, Tan TY (2001) Extended high temperature Al gettering for improvement and homogenisation of minority carriers in mc-Si. Sol Energ Mat Sol Cells 70:231

    Article  Google Scholar 

  82. Boudaden J, Monna R, Loghmarti M, Muller JC (2002) Comparison of phosphorus gettering for different mc-Si. Sol Energ Mat Sol Cells 72:381

    Article  Google Scholar 

  83. Estreicher SK, Hastings JL, Fedders L (1999) Hydrogen-defects interactions in Si. Mat Sci Eng B 58:130

    Article  Google Scholar 

  84. Martinuzzi S, Périchaud I, Warchol F (2003) Hydrogen passivation of defects in mc-Si solar cells. Sol Energ Mat Sol Cells 80:343

    Article  Google Scholar 

  85. Geerligs LJ, Komatsu Y, Röver I, Wambach K, Yamaga I, Saitoh T (2007) Precipitates and hydrogen passivation at crystal defects in n and p-type mc-Si. J Appl Phys 102:093702

    Article  Google Scholar 

  86. Seibt M, Sattler A, Rudolf C, Vos O, Kveder V, Schröter W (2006) Gettering in silicon photovoltaics: current state and future perspectives. Phys Stat Sol (a) 4:696

    Article  Google Scholar 

  87. Sheoran M, Upadhyaya A, Rohatgi A (2008) Bulk lifetime efficiency enhancement due to gettering and hydrogenation of defects during cast mc-Si solar cell fabrication. Solid State Electron 52:612

    Article  Google Scholar 

  88. Tan J, Macdonald D, Bennet N, Kong D, Cuevas A, Romijn I (2007) Dissolution of metal precipitates in mc-Si during annealing and the protective effect of phosphorus emitters. Appl Phys Lett 91:043505

    Article  Google Scholar 

  89. Dubois S, Enjalbert N, Warchol F, Martinuzzi S (2009) Is hydrogen or aluminium gettering the improvement key of mc-Si wafers? Mat Sci Eng B 151:239

    Article  Google Scholar 

  90. Macdonald D, Geerligs LJ (2004) Recombination activity of interstitial iron and other transition metal point defects in n and p-type crystalline silicon. Appl Phys Lett 85:4061

    Article  Google Scholar 

  91. Cuevas A, Kerr MJ, Samundsell C, Ferrazza F, Coletti G (2002) Millisecond minority carrier lifetime in n type multicrystalline silicon. Appl Phys Lett 81(26):4952

    Article  Google Scholar 

  92. Libal J, Buck T, Kopecek R, Fath P, Wambach K, Acciari A, Binetti S, Geerligs L (2004) Properties of n-type mc-Si: lifetime, gettering and H-passivation. In: 19th EUPVSEC, Paris, France, p 1013

    Google Scholar 

  93. Schmiga C, Schmidt J, Gosh M, Metz A, Hezel R (2004) Gettering and passivation of recombination centres in n-type mc-Si. In: 19th EPUVSEC Paris, p 439

    Google Scholar 

  94. Cotter JE, Guo JH, Cousins PJ, Abbott MD, Chen FW, Fisher KC (2005) p-type vs. n-type silicon wafers. In: 15th Workshop on crystalline silicon solar cells, Vail, CO, (NREL), Golden, CO, pp 3–10

    Google Scholar 

  95. Martinuzzi S, Palais O, Ferrazza M (2005) N-type mc-Si wafers and rear junction solar cells. Eur Phys J Appl Phys 32:187–192

    Article  Google Scholar 

  96. Istratov AA, Hieslmair H, Weber EW (1999) Iron and its complexes in silicon. Appl Phys A 69:13

    Article  Google Scholar 

  97. Martinuzzi S, Warchol F, Dubois S, Enjalbert N (2009) Influence of chromium on minority carrier properties in intentionally contaminated n-type mc-Si wafers. Mat Sci Eng B 151:239

    Google Scholar 

  98. Kang JS, Schroder DK (1982) Gettering in silicon. J Appl Phys 65:2974

    Article  Google Scholar 

  99. Woditsch P, Koch W (2002) Solar grade silicon feedstock supply for PV industry. Sol Energ Mat Sol Cells 72:11

    Article  Google Scholar 

  100. Möller HJ, Funke C, Würzner S (2009) Melt growth of SiC and Si3N4 precipitates during crystallization of multicrystalline silicon for solar cells. In: 3rd international workshop on crystalline silicon solar cells, SINTEF/NTU, Trondheim Norway

    Google Scholar 

  101. Liu L, Nakano S, Kakimoto K (2008) Carbon concentration and particle precipitation during directional solidification of mc-Si for solar cells. J Cryst Growth 310:2192

    Article  Google Scholar 

  102. Bauer J, Breitenstein O, Rakotoniaina JP (2007) Electronic activity of SiC precipitates in mc-solar silicon. Phys Stat Sol A 204:2190

    Article  Google Scholar 

  103. Degoulange J, Périchaud I, Trassy C, Martinuzzi S (2008) Multicrystalline silicon wafers prepared from upgraded metallurgical feedstock. Sol Energ Mat Sol Cells 92:1269–1273

    Article  Google Scholar 

  104. Martinuzzi S, Périchaud I, Trassy C, Degoulange J (2009) n-type multicrystalline silicon wafers prepared from plasma torch refined upgraded metallurgical feedstock. Prog Photovolt Res Appl 17:297–305

    Article  Google Scholar 

  105. Rodot M, Bourrée JE, Mesli A, Revel G, Kishore R, Pizzini S (1987) Al-related recombination centre in polycrystalline Si. J Appl Phys 62:2556

    Article  Google Scholar 

  106. Rosenith O, Roth T, Glunz SW (2007) Determining the defect parameters of the deep aluminium related defect centre in silicon. Appl Phys Lett 91:122109

    Article  Google Scholar 

  107. Pizzini S, Borsani F, Acciari M (1989) Effect of oxygen and carbon on the electrical properties of grain boundaries in silicon. Mat Sci Eng B4:353

    Article  Google Scholar 

  108. Green MA (1995) Silicon solar cells, advanced principle and practice, centre for photovoltaic devices and systems. Bridge, Sydney

    Google Scholar 

  109. Sopori BL, Pryor RA (1983) Design of anti-reflection coatings for textured silicon solar-cells. Solar Cells 8:249

    Article  Google Scholar 

  110. Duerinckx F, Noppe A, Choulat P, Szlufcik J, Nijs J, Habbraken B (2000) Advanced industrial process for large area screen printed mc-Si solar cells. In: 16th EU PVSEC, Glasgow, p 1301

    Google Scholar 

  111. Revesz AG (1973) Vitreous oxide antireflection films in high-efficiency solar cells. In: 10th IEEE PVSEC, Lisbon, p 180

    Google Scholar 

  112. Kern W, Tracy E (1980) Titanium dioxide antireflection coating for silicon solar cells by spray deposition. RCA Rev 41:19

    Google Scholar 

  113. Zhao J, Green MA (1991) Optimized antireflection coatings for high-efficiency silicon solar cells. IEEE Trans Electron Devices 38(8):1925–1934

    Article  Google Scholar 

  114. Richards BS (2004) Comparison of TiO2 and other dielectric coatings for buried contact solar cells: a review. Prog Photovolt Res Appl 12:253–281

    Article  Google Scholar 

  115. Streling HF, Swann RCG (1965) Chemical vapour deposition promoted by RF discharge. Solid State Electron 8:653

    Article  Google Scholar 

  116. Bilyalov RR, Stalmans L, Schirone L, Lévy-Clément C (1999) Use of porous silicon antireflection coating in multicrystalline silicon solar cells. IEEE Trans Electron Devices 46(10):2035–2040

    Article  Google Scholar 

  117. Strehlke S, Bastide S, Guillet J, Lévy-Clément C (2000) Design of porous silicon antireflection coatings for silicon solar cells. Mat Sci Eng B69–70:81–86

    Article  Google Scholar 

  118. Green MA (1982) Solar cells, operating principles, technology and system applications. Prentice Hall, Englewood Cliffs. ISBN 0-13-82270

    Google Scholar 

  119. Hylton JD, Burgers AR, Sinke WC (2004) Alkaline etching for reflectance reduction in multicrystalline silicon solar cells. J Electrochem Soc 151(6):G408–G427

    Article  Google Scholar 

  120. Nunoi T (1990) Cast polycrystalline silicon solar cell with grooved surface. In: 21st IEEE –PVSC, p 664

    Google Scholar 

  121. Seidel H, Csepregi L, Heuberger A, Baumgärtel H (1990) Anisotropic etching of crystalline silicon in alkaline solutions – I – orientation dependence and behavior of passivation layers. J Electrochem Soc 137(11):3612

    Article  Google Scholar 

  122. Bastide S, Lévy-Clément C (2006) Electrochemical macroporous texturization of multicrystalline silicon. J New Mater Electrochem Syst 9(3):269

    Google Scholar 

  123. Luque A (1988) Solar cells and optics for photovoltaic concentration. Adam Hilger, Bristol, Chapter 14

    Google Scholar 

  124. Campbell P (1993) Enhancement of light absorption from randomising and geometric textures. J Opt Soc Am B 10:2410–2415

    Article  Google Scholar 

  125. Hylton JD, Kinderman K, Burgers AR, Sinke WC, Bressers PMMC (1996) Uniform pyramid formation on alkaline-etched polished monocrystalline (100) silicon wafers. Prog Photovol Res Appl 4:435–438

    Article  Google Scholar 

  126. Papet P, Nichiporuk O, Kaminski A, Roz Y, Kraiem J, Lelievre JF, Chaumart A, Fave A, Lemiti M (2006) Pyramidal texturing of silicon solar cell with TMAH chemical anisotropic etching. Sol Energ Mat Sol Cells 90:2319

    Article  Google Scholar 

  127. Hylton JD (2006) Light coupling and light trapping in alkaline textured multicrystalline silicon wafers for solar cells, PhD thesis, Utrecht. ISBN-10- 90-810463-1-4, ISBN—13-978-90-810463-1-2

    Google Scholar 

  128. Sarti D, Le QN, Bastide S, Goaer G, Ferry D (1995) Thin industrial mc-Si solar cells and improved optical absorption. In: 13th EUPVSEC, Nice, France, p 25

    Google Scholar 

  129. Einhaus R, Vazsonyi E, Szlufcik J, Nijs J, Mertens R (1997) In: 26th IEEE PV SC, Anaheim, CA, USA, p 170

    Google Scholar 

  130. Stocks MJ, Carr AJ, Blakers AW (1996) Texturing of polycrystalline silicon. Sol Energ Mat Sol Cells 40:33–42

    Article  Google Scholar 

  131. Zhao J, Wan A, Green MA (1998) 19.8% Efficient multicrystalline silicon solar cells with “honeycomb” textured front surface. In: The 2nd World conference and exhibition on photovoltaic solar energy conversion, Vienna, Austria, July 1998, p 516

    Google Scholar 

  132. Gittlemen JM, Sichel EK, Lehman HW, Widner R (1979) Textured silicon – selective absorber for solar thermal conversion. Appl Phys Lett 35:742

    Article  Google Scholar 

  133. Winderbaum S, Reinhold O, Yun F (1997) Reactive ion etching (RIE) as a method for texturing polycrystalline silicon solar cells. Sol Energ Mat Sol Cells 46:239

    Article  Google Scholar 

  134. Inomata Y, Fukui K, Shirasawa K (1997) Surface texturing of large area multicrystalline silicon solar cells using reactive ion etching method. Sol Energ Mat Sol Cells 48:237, Part II

    Article  Google Scholar 

  135. Koynov S, Brandt MS, Stutzmann M (2007) Black multi-crystalline silicon solar cells. Phys Stat Sol A 1(2):R53

    Google Scholar 

  136. Green MA (1987) High efficiency silicon solar cells. Trans Tech, Aedermannsdorf. ISBN 0-87849-537-1

    Google Scholar 

  137. Eades WD, Swanson RM (1985) Calculation of surface generation and recombination velocities at the Si-SiO2 interface. J Appl Phys 58:4267

    Article  Google Scholar 

  138. Hoex B, Schmidt J, Bock R, Altermatt PP, Van de Sanden MM, Kessels MM (2007) Excellent passivation of highly doped p-type Si surfaces by the negatively charged dielectric Al2O3. Appl Phys Lett 91:112107

    Article  Google Scholar 

  139. Lammert MD, Schwartz RJ (1997) The interdigitated back contact solar cell: a silicon solar cell for use in concentrated sunlight. IEEE Trans Electron Dev ED-24:337

    Google Scholar 

  140. Swanson RM, Beckwith SK, Crane RA, Eades WD, Sinton RA, Swirhun SE (1984) Interdigitated back contact solar cells. Trans Electron Devices ED-31:661

    Article  Google Scholar 

  141. Van Kerschaver E, Beaucarne G (2006) Back-contact solar cells: a review. Prog Photovolt Res Appl 14:107

    Article  Google Scholar 

  142. Gee J (1993) Emitter wrap through solar cells. In: 23rd IEEE PVSC, Louisville, p 265

    Google Scholar 

  143. Dicke J Jr, Schumacher O, Warta W, Glunz SW (2002) Analysis of one-sun monocrystalline rear-contacted silicon solar cells with efficiencies of 22.1%. J Appl Phys 91:4335

    Article  Google Scholar 

  144. Hezel R, Meyer R, Metz A (2001) A new generation of crystalline silicon solar cells: Simple processing and record efficiencies for industrial-size devices. Sol Energ Mat Sol Cells 65:311

    Article  Google Scholar 

  145. Sinton RA, Swanson RM (1990) Simplified backside-contact solar cells. IEEE Trans Electron Devices 37:348

    Article  Google Scholar 

  146. Verlinden P (1991) High-efficiency backside contact solar cells with a self-aligned process and new texturization technique for silicon. In: 10th EUPVSEC, Lisbon, Portugal, p 246

    Google Scholar 

  147. Papet P, Kaminski A, Fourmond E, Calmon F, Lemiti M, Jozwik J (2008) Interdigitated back contact solar cells with SiO2 and SiN back surface passivation. J Non Cryst Solids 354(35–39):4341

    Google Scholar 

  148. Swanson RM (2006) A vision for crystalline silicon solar cells. Prog Photovolt Res Appl 14:443

    Article  Google Scholar 

  149. Papet P, Nychyporuk O, Kaminski A, Lemiti M (2008) Realization of self-aligned back-contact solar cells. Electrochem Solid State Lett 11:H114

    Article  Google Scholar 

  150. Bothe K, Schmidt J, Hezel R (2002) Effective reduction of the metastable defect concentration in boron-doped Czochralski silicon for solar cells. In: 29th IEEE-PVSC, New Orleans LA, USA, p 194

    Google Scholar 

  151. Lee JY, Peters S, Rein S, Glunz SW (2001) Improvement of charge minority-carrier lifetime in p(boron)-type Czochralski silicon by rapid thermal annealing. Prog Photovol Res Appl 9:417

    Article  Google Scholar 

  152. Glunz SW, Rein S, Warta W, Knobloch J, Wettling W (2001) Degradation of carrier lifetime in Cz silicon solar cells. Sol Energ Mat Sol Cells 65:219

    Article  Google Scholar 

  153. Lim B, Liu A, Macdonald D, Bothe K, Schmidt J (2009) Appl Phys Lett 95:232109

    Google Scholar 

  154. Shultz O, Glunz SW, Willeke GP (2004) mc-Si solar cells exceeding 20% in efficiency. Prog Photovol Res Appl 12:553

    Article  Google Scholar 

  155. Inoue S, Sakamoto T, Komoda H, Ohwada H, Fukui K, Shirasawa K (2008) High efficiency mc-Si back contact solar cells. In: 23rd EUPVSEC, Valencia, p 988

    Google Scholar 

  156. Romijn IG, Mewe AA, Lamers M, Kossen E, Bende EE, Weeber AW (2008) An overview of MWT cells and evolution to the aspire concept : a new integrated mc-Si cell and module design for high efficiencies. In: 23rd EUPVSEC, Valencia, Spain, p 1000

    Google Scholar 

  157. Van der Heide A, Gribenski D, Szlufcik J (2009) Industrial fabrication of multicrystalline silicon MWT cells with interconnection flexibility. In: 24th EUPVSEC, Hamburg, Germany, p 942

    Google Scholar 

  158. Peters C, Engelhart P, Wade R, Jesswein R, Rychtarik D, Müller JW (2008) Alba-development for high efficiency mc-Si solar for industrial fabrication at Q-Cells. In: 23rd EUPVSEC, Valencia, Spain, p 1010

    Google Scholar 

  159. Hamamoto S, Ishihara T, Sato T, Fujikawa M, Morikawa H, Matsuno S, Fujioka H Arimoto Investigation for 19% at mc-Si solar cell by industrial probable approach. In: 24th EUVSEC, Hamburg, Germany, p 1410

    Google Scholar 

  160. Shi Z, Wenham S, Ji J (2009) Mass production of new high efficiency mc-Si solar cells with selective emitter. In: 24th EUPVSEC, Hamburg, Germany, p 1090

    Google Scholar 

  161. Kaes M, Hahn G, Metz A, Agostinelli G, Ma Y, Junge J, Zuschlag A, Groetschel D (2007) Progress in high efficiency processing of EFG silicon solar cells. In: 22rd EUPVSEC, Milan, Italy, p 897

    Google Scholar 

  162. Oberholtzner F, Dubé CM (2007) Efficiency improvements of string ribbon silicon solar cells. In: 22rd EUPVSEC, Milan, Italy, p 916

    Google Scholar 

  163. Seren S, Kaes M, Hahn G, Gutjahr A, Burgers AR, Schoneker A (2007) Efficiency potential of RGS Si from current R&D production. In: 22rd EUPVSEC, Milan, Italy, p 854

    Google Scholar 

  164. Kim DS, Yelundur V, Nakayashiki K, Rousaville B, Rohatgi A (2006) Ribbon Silicon solar cells with efficiencies over 18% by hydrogenation of defects. Sol Energ Mat Sol Cells 9(23):1227

    Article  Google Scholar 

  165. Bronsveld PCP, Naber RCG, Geerligs LJ, Pozigun S, Syvertsen M, Knopf C, Kvande R (2009) p and n-type mono and mc-Si solar cells using blended upgraded metallurgical grade silicon. In: 24th EUPVSEC, Hamburg, Germany, p 1137

    Google Scholar 

  166. Braun S, Raab B, Kohler D, Seren S, Hahn G (2009) Comparison of buried contacts and screen printed 100% UMG solar cells resulting in 16.2% efficiency. In: 24th EPVSEC, Hamburg, Germany, p 1736

    Google Scholar 

  167. Kraiem J, Einhaus R, Lauvray H (2009) Method for producing photovoltaic-grade crystalline silicon by addition of doping impurities and photovoltaic cell, WO Patent number WO/2009/130,409

    Google Scholar 

  168. Veirman J, Dubois S, Enjalbert N, Garandet JP, Lemiti M, Heslinga DR (2010) Hall mobility reduction in single-crystalline silicon gradually compensated by thermal donor activation. Solid State Electron 54:671

    Article  Google Scholar 

  169. Dubois S, Enjalbert N, Garandet JP (2008) Effects of the compensation level on the carrier lifetime of crystalline silicon. Appl Phys Lett 93:032114

    Article  Google Scholar 

  170. Macdonald D, Rougieux F, Cuevas A, Lim B, Schmidt J, Di Sabatino M, Geerligs LJ (2009) Light-induced boron-oxygen defect generation in compensated p-type Czochralski silicon. J Appl Phys 105:093705

    Article  Google Scholar 

  171. De Ceuster D, Cousins P, Rose D, Vicente, Tipones P, Mulligan W (2007) Low cost, high volume production of >22% efficiency silicon solar cells. In: 22nd EUPVSEC, Milan, Italy, p 816

    Google Scholar 

  172. Nakamura K, Kohira M, Abiko, Isaka Y, Funakoshi Y, Machida T (2008) Development of back contact solar cells and modules in production line. In: 23rd EUPVSEC Valencia, Spain, p 1006

    Google Scholar 

  173. Granek F, Hermle M, Reichel C, Schlutz-Wittmann O, Glunz SW (2008) High efficiency back contact back junction silicon solar cell. In: 23rd EUPVSEC,Valencia, Spain, p 991

    Google Scholar 

  174. Mertens V, Bordihn S, Larionova Y, Harder NP, Brendel R (2009) The buried emitter solar cell concept: interdigitated back-junction structure. In: 24th EUPVSEC Hamburg, Germany, p 934

    Google Scholar 

  175. Okuda K, Okamoto H, Yamakawa H (1983) Amorphous Si-polycrystalline Si stacked solar cells having more than 12% conversion efficiency. Jpn J Appl Phys 22:L605

    Article  Google Scholar 

  176. Fuhs W, Niemann K, Stuke J (1974) Heterojunctions of amorphous silicon and silicon single crystals. Bull Am Phys Soc 19:345

    Google Scholar 

  177. Wakisaka K, Taguchi M, Sawada T, Tanaka M, Matsuyama T, Matsuoka T, Tsuda S, Nakano S, Kishi Y, Kuwano Y (1991) More than 16% solar cells with a new “HIT” (doped a-Si/nondoped a-Si/crystalline Si) structure. In: Conference record of the 22nd IEEE-PVSC, Washington DC, p 887

    Google Scholar 

  178. Tanaka M, Taguchi M, Matsuyama T, Sawada T, Tsuda S, Nakano S, Hanafusa H, Kuwano Y (1992) Development of new a-Si/c-Si heterojunction solar cells, ACJ-HIT (artificially constructed junction–heterojunction with intrinsic thin layer). Jpn J Appl Phys 31:3518

    Article  Google Scholar 

  179. Taguchi M, Kawamoto K, Tsuge S, Baba T, Sakata T, Morizane M, Uchihashi K, Nakamura N, Kiyama S, Oota O (2000) HITTM cells – high-efficiency crystalline Si cells with novel structure. Prog Photovolt Res Appl 8:503

    Article  Google Scholar 

  180. Taguchi M, Terakawa A, Maruyama E, Tanaka M (2005) Obtaining a higher Voc in HIT cells. Prog Photovolt Res Appl 13:481

    Article  Google Scholar 

  181. Taira S, Yoshimine Y, Baba T, Taguchi M, Kanno H, Kinoshita T, Sakata H, Maruyama E, Tanaka M (2007) Our approaches for achieving HIT solar cells with more than 23% efficiencies. In: 22nd EUPVSEC, Milan, Italy, p 932

    Google Scholar 

  182. Taguchi M, Tsunomura Y, Inoue H, Taira S, Nakashima T, Baba T, Sakata H, Maruyama E (2009) High-efficiency hit solar cell on thin (<100 μm) silicon wafer. In: 24th EUPVSEC, Hamburg, Germany, p 1690

    Google Scholar 

  183. Kleider JP, Gudovskikh AS, Roca Cabarrocas P (2008) Determination of the conduction band offset between hydrogenated amorphous silicon and crystalline silicon from surface inversion layer conductance measurements. Appl Phys Lett 92:162101

    Article  Google Scholar 

  184. Schmidt M, Korte L, Laades A, Stangl R, Schubert Ch, Angermann H, Conrad E, Kv M (2007) Physical aspects of a-Si:H/c-Si hetero-junction solar cells. Thin Solid Films 515:7475

    Article  Google Scholar 

  185. Favre W, Labrune M, Dadouche F, Gudovskikh AS, Roca i Cabarrocas P, Kleider JP (2010) Study of the interfacial properties of amorphous silicon/n-type crystalline silicon heterojunction through static coplanar conductance measurements. Phys Stat Sol (c) 7:1037

    Google Scholar 

  186. Angermann H, Rappich J, Korte L, Sieber I, Conrad E, Schmidt M, Hübener K, Polte J, Hauschild J (2008) Wet-chemical passivation of atomically flat and structured silicon substrates for solar cell application. Appl Surf Sci 254:3615–3625

    Article  Google Scholar 

  187. Moreno M, Labrune M, Roca i Cabarrocas P (2010) Dry fabrication process for heterojunction solar cells through in-situ plasma cleaning and passivation. Sol En Mat Sol Cells 94:402

    Article  Google Scholar 

  188. Das UK, Burrows MZ, Lu M, Bowden S, Birkmire RW (2008) Surface passivation and heterojunction cells on Si (100) and (111) wafers using dc and rf plasma deposited Si:H thin films. Appl Phys Lett 92: 063504.1

    Google Scholar 

  189. Fesquet L, Olibet S, Vallat-Sauvain E, Shah A, Ballif C (2007) High quality surface passivation and heterojunction fabrication by VHF-PECVD deposition of amorphous silicon on crystalline Si: theory and experiment. In: 22nd EUPVSEC, Milan, Italy, p 1678

    Google Scholar 

  190. Schmidt M, Schoepke A, Korte L, Milch O, Fuhs W (2004) Density distribution of gap states in extremely thin a-Si:H layers on crystalline silicon wafers. J Non Cryst Solids 338–340:211

    Article  Google Scholar 

  191. De Wolf S, Kondo M (2009) Nature of doped a-Si:H/c-Si interface recombination. J Appl Phys 105: 103707–1

    Google Scholar 

  192. Fujiwara H, Kondo M (2007) Impact of epitaxial growth at the heterointerface of a-Si: H/c-Si solar cells. Appl Phys Lett 90:013503–1

    Article  Google Scholar 

  193. Korte L, Conrad E, Angermann H, Stangl R, Schmidt M (2007) Overview on a-Si:H/c-Si heterojunction solar cells – physics and technology. In: 22nd EUPVSEC, Milan, Italy, p 859

    Google Scholar 

  194. Mueller T, Schwertheim S, Meusinger K, Wdowiak B, Fahrner WR (2009) Application of plasma deposited nanocomposite silicon suboxides and microcrystalline silicon alloys to heterojunction solar cells. In: 34th IEEE-PVSC, Philadelphia, PA, USA, p 002378

    Google Scholar 

  195. Fesquet L, Olibet S, Vallat-Sauvain E, Shah A, Ballif C (2007) High quality surface passivation and heterojunction fabrication by VHF-PECVD deposition of amorphous silicon on crystalline Si: theory and experiment. In: Proceedings of the 22nd EUPVSEC, Milan, Italy, p 1678

    Google Scholar 

  196. Wang Q, Page MR, Iwaniczko E, Xu Y, Roybal L, Bauer R, To B, Yuan HC, Duda A, Hasoon F, Yan YF, Levi D, Meier D, Branz HM, Wang TH (2010) Efficient heterojunction solar cells on p-type crystal silicon wafers. Appl Phys Lett 96: 01350.1

    Google Scholar 

  197. Muñoz D, Ozanne AS, Harrison S, Danel A, Souche F, Denis C, Favier A, Nguyen N, Hickel PE, Mur P, Salvetat T, Ribeyron PJ (2010). Towards high efficiency on full wafer a-Si:H/c-Si heterojunction solar cells: 19.5% on 148 cm2. In: 35th IEEE – PVSC, Hawaï, to be published

    Google Scholar 

  198. Wünsch F, Citarella G, Abdallah O, Kunst M (2006) An inverted a-Si:H/c-Si hetero-junction for solar energy conversion. J Non Cryst Sol 352:1962

    Article  Google Scholar 

  199. Lu M, Bowden S, Das UK, Birkmire RW (2007) A-Si/c-Si heterojunction for interdigitated back contact solar cell. In: 22nd EPVSEC, Milan, Italy, pp 924–927

    Google Scholar 

  200. Dicker J, Schumacher JO, Warta W, Glunz SW (2002) Analysis of one-sun monocrystalline rear-contacted silicon solar cells with efficiencies of 22.1%. J Appl Phys 91:4335

    Article  Google Scholar 

  201. Stangl R, Bivour M, Conrad E, Didschuns I, Korte L, Lips K, Schmidt M (2007) RECASH a novel high efficiency buried grid rear contact amorphous/crystalline silicon heterojunction solar cell concept. In: 22nd EUPVSEC, Milan, Italy, p 870

    Google Scholar 

  202. Stangl R, Haschke J, Bivour M, Korte L, Schmidt M, Lips K, Rech B (2009) Planar rear emitter back contact silicon heterojunction solar cells. Sol Energ Mat Sol Cells 93:1900

    Article  Google Scholar 

  203. Tucci M, Serenelli L, Salza E, De Luliis S, Geerligs LJ, Caputo D, Ceccarelli M, de Cesare G (2008) Back contacted a-Si:H/c-Si heterostructure solar cells. J Non Cryst Solids 354:2386

    Article  Google Scholar 

  204. Swanson RM (2005) Approaching the 29% limit efficiency of silicon solar cells. In: 31st IEEE-PVSC, Orlando, Florida, USA, pp 889–894

    Google Scholar 

  205. Diouf D, Kleider JP, Desrues T, Ribeyron PJ (2009) Study of interdigitated back contact silicon heterojunctions solar cells by two-dimensional numerical simulations. Mat Sci Eng B 159–160:291

    Article  Google Scholar 

  206. Desrues T, Ribeyron PJ, Vandeneynde A, Ozanne AS, Souche F, Muñoz D, Denis C, Diouf D, Kleider JP (2010) B-doped a-Si:H contact improvement on silicon heterojunction solar cells and interdigitated back contact structure. Phys Stat Sol (c) 7:1011–1015

    Google Scholar 

  207. Stelzner Th, Pietsch M, Andrä G, Falk F, Ose E, Christiansen S (2008) Silicon nanowire-based solar cells. Nanotechnology 19:295203

    Article  Google Scholar 

  208. Guao JH, Tjahjono BS, Cotter JE (2005) In: 31st IEEE-PVSC, Orlando, Florida, USA, p 983

    Google Scholar 

  209. Schmiga C, Nagel H, Schmidt J (2006) Czochraslki silicon solar cells with screen printed Al alloyed rear emitter. Prog Photovolt Res Appl 14:533–539

    Article  Google Scholar 

  210. Schmiga C, Hermle M, Glunz SW (2008) Towards 20% efficient n-type Si solar cells with screen printed Al-alloyed rear emitter. In: 23rd EUPVSEC, Valencia, Spain, p 982

    Google Scholar 

  211. Weeber A, Naber R, Guillevin N, Barton P, Carr A, Saynova D, Burgers T, Geerligs B (2009) Status of n-type solar cells for low cost industrial production. In: 24th EUPVSEC, Hamburg, Germany, p 891

    Google Scholar 

  212. Schmiga C, Hörteis M, Rauer M, Meyer K, Lossen J, Hermle M, Glunz J (2009) Large area n-type silicon solar cells with printed contacts and aluminium-alloyed rear emitter. In: 24th EUPVSEC, Hamburg, Germany, p 1167

    Google Scholar 

  213. Cong C, Posthuma N, Dross F, Giovanni F, Van Kerschaver, Beaucarne G, Poortmans J (2008) Comparison of n and p-type high efficiency silicon solar cell performance under low illumination conditions. In: 23rd EUPVSEC, Valencia, Spain, p 1360

    Google Scholar 

  214. Meier DL, Davis HP, Garcia RA, Salami J, Rohatgi A, Ebing A, Doshi P (2001) Aluminium alloy back p-n junction dendritic web silicon cell. Sol Energ Mat Sol Cells 65:621

    Article  Google Scholar 

  215. Benick J, Hoex B, van de Sanden MCM, Kessels W, Schultz O, Glunz SW (2008) High efficiency n-type solar cells on Al2O3 passivated boron emitter. Appl Phys Lett 92:253504–253504-3

    Article  Google Scholar 

  216. Mihailetchi VD, Komatsu K, Geerligs LJ (2008) Nitric acid pretreatment for the passivation of boron emitter for n-type base silicon solar cells. Appl Phys Lett 92:063510

    Google Scholar 

  217. Zhao J, Wang A (2006) Rear emitter n-type passivated emitter, rear totally diffused silicon solar cell structure. Appl Phys Lett 88:242102

    Article  Google Scholar 

  218. Benick J, Hoex B, Dingemans G, Kessels W, Richter A, Hermle A, Glunz SW (2009) High efficiency n-type silicon solar cells with front side boron emitter. In: 24th EUPVSEC, Hamburg, Germany, p 863

    Google Scholar 

  219. Schutz-Kuchly T, Veschetti Y, Cabal R, Sanzone V, Heslinga D (2009) High efficiency on inversed emitter n-type Si solar cells. In: 24th EUPVSEC, Hamburg, Germany, p 955

    Google Scholar 

  220. Veschetti Y, Schutz-Kuchly T, Sanzone V, Heslinga D (2009) Electrical properties of n-type solar grade silicon – fabrication of solar cells and investigation of LID effect. In: 24th EUPVSEC, Hamburg, Germany, p 2209

    Google Scholar 

  221. Stoddard N, Wu B, Witting L, Wagener M, Park Y, Rozgonyi GA, Clark RF (2008) Casting single crystal silicon: novel defect profiles form BP Solar’s Mono 2TM wafers. Solid State Phenomena 131(1):8

    Google Scholar 

  222. Engelhart P, Zimmermann G, Klenke C, Wendt J, Kaden T, Junghänel M, Barkenfelt B, Petter K, Herman S, Schmidt S, Rychtarik D, Fischer M, Müller JW, Wawer P (2011) In: 37th IEEE- PVSC, Seattle, USA

    Google Scholar 

  223. Woehl R, Keding R, Rüdiger M, Gentischer H, Clement F, Wilde J, Biro D (2001) 20% efficient screen-printed and aluminium-alloyed back contact back junction and interconnection scheme of point-shaped metalized cells. In: 37th PVSC, Seattle, USA

    Google Scholar 

  224. Kiefer F, Ulzhofer C, Bendenmühl T, Harder NP, Brendel R, Mertens V, Bordihn S, Peters C, Müller JW (2011) In: 37th IEEE-PVSC, Seattle, USA

    Google Scholar 

  225. Weeber AW, Burgers AR, Guillevin N, Carr AJ, Barton PC, Geerligs LJ, Jingfeng X, Gaofer L, Weipeng S, Haijiao A, Zhiyan H, Venema PR, Vlooswijk AHG (2010) Recent developments of low cost industrial processing of n-type silicon solar cells. In: Proceedings of crystalline silicon solar cells 4, Taipei

    Google Scholar 

  226. Veschetti Y, Cabal R, Brand P, Sanzone V, Raymond G, Betinelli A (2011) High efficiency on boron emitter n-type Cz silicon solar cells with industrial process. In: 37th IEEE-PVSC, Seattle, USA

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santo Martinuzzi .

Editor information

Editors and Affiliations

Abbreviations

EUPVSEC

European Photovoltaic Solar Energy Conferences

IEEE-PVSC

Photovoltaic Specialist Conferences

SOLMAT

Solar Energy Materials and Solar Cells

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this entry

Cite this entry

Martinuzzi, S. et al. (2013). Silicon Solar Cells , Crystalline. In: Richter, C., Lincot, D., Gueymard, C.A. (eds) Solar Energy. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5806-7_461

Download citation

Publish with us

Policies and ethics