Sustainable Food Production

2013 Edition
| Editors: Paul Christou, Roxana Savin, Barry A. Costa-Pierce, Ignacy Misztal, C. Bruce A. Whitelaw

Avian Specific Transgenesis

  • Michael J. McGrew
Reference work entry
DOI: https://doi.org/10.1007/978-1-4614-5797-8_6

Definition of the Subject

Transgenesis is the process by which an exogenous DNA molecule is incorporated into the genome of an animal. This technology promises the possibility to investigate and manipulate the production traits of poultry, produce recombinant proteins in the eggs of genetically engineered layer lines, and directly intervene in the health and welfare of avian species. The complexity of the avian egg and the precocious development of the avian embryo in the female before oviposition (laying) have hindered endeavors in avian transgenesis. Three decades of effort have been carried out to achieve the genetic modification of the avian genome. The generation of novel methods for the modification of the avian genome has led to the current advances in the field of avian transgenesis. This entry will delineate the methods used for avian transgenesis, the current state of the art, and the potential future directions research in this field will take.

Introduction

Due to its use in...

This is a preview of subscription content, log in to check access

Bibliography

Primary Literature

  1. 1.
    Houdebine L-M (2009) Production of pharmaceutical proteins by transgenic animals. Comp Immunol Microbiol Infect Dis 32:2107–2121Google Scholar
  2. 2.
    Lillico SG, McGrew MJ, Sherman A, Sang HM (2005) Transgenic chickens as bioreactors for protein-based drugs. Drug Discov Today 10:3191–3196CrossRefGoogle Scholar
  3. 3.
    Council for Agricultural Science and Technology (CAST) (2007) The role of transgenic livestock in the treatment of human disease. Issue Paper 35. CAST, AmesGoogle Scholar
  4. 4.
    Raju TS, Briggs JB, Borge SM, Jones AJS (2000) Species-specific variation in glycosylation of IgG: evidence for the species-specific sialyation and branch-specific galactosylation and importance for engineering recombinant glycoprotein therapeutics. Glycobiology 10:477–486PubMedCrossRefGoogle Scholar
  5. 5.
    Rapp JC, Harvey AJ, Speksnijder GL, Hu W, Ivarie R (2003) Biologically active human interferon alpha-2b produced in the egg white of transgenic hens. Transgenic Res 12:569–575PubMedCrossRefGoogle Scholar
  6. 6.
    Lillico SG, Sherman A, McGrew MJ, Robertson CD, Smith J, Haslam C, Barnard P, Radcliffe PA, Mitrophanous KA, Elliot EA, Sang HM (2007) Oviduct-specific expression of two therapeutic proteins in transgenic hens. Proc Natl Acad Sci USA 104:1771–1776PubMedCrossRefGoogle Scholar
  7. 7.
    Koo BC, Kwon MS, Lee H, Kim M, Kim D, Roh JY, Park YY, Cui XS, Kim NH, Byun SJ, Kim T (2010) Tetracycline-dependent expression of the human erythropoietin gene in transgenic chickens. Transgenic Res 19(3):437–447PubMedCrossRefGoogle Scholar
  8. 8.
    Stern CD (2005) The chick: a great model system becomes even greater. Dev Cell 8:9–17PubMedGoogle Scholar
  9. 9.
    Chapman SC, Lawson A, Macarthur WC, Wiese RJ, Loechel RH, Burgos-Trinidad M, Wakefield JK, Ramabhadran R, Mauch TJ, Schoenwolf GC (2005) Ubiquitous GFP expression in transgenic chickens using a lentiviral vector. Development 132:935–940PubMedCrossRefGoogle Scholar
  10. 10.
    McGrew MJ, Sherman A, Lillico SG, Ellard FM, Radcliffe PA, Gilhooley HJ, Mitrophanous KA, Cambray N, Wilson V, Sang H (2008) Localised axial progenitor cell populations in the avian tail bud are not committed to a posterior Hox identity. Development 135:2289–2299PubMedCrossRefGoogle Scholar
  11. 11.
    Zhao D, McBride D, Nandi S, McQueen HA, McGrew MJ, Hocking PM, Lewis PD, Sang HM, Clinton M (2010) Somatic sex identity is cell-autonomous in the chicken. Nature 464:237–242PubMedCrossRefGoogle Scholar
  12. 12.
    Council for Agricultural Science and Technology (CAST) (2009) Animal productivity and genetic diversity: cloned and transgenic animals. Issue Paper 43. CAST, AmesGoogle Scholar
  13. 13.
    Golovan SP, Meidinger RG, Ajakaiye A, Cottrill M, Wiederkehr MZ, Barney DJ, Plante C, Pollard DW, Fan MZ, Hayes MA, Laursen J, Hjorth JP, Hacker RR, Phillips JP, Forsberg CW (2001) Pigs expressing salivary phytase produce low-phosphorus manure. Nat Biotechnol 19:741–745PubMedCrossRefGoogle Scholar
  14. 14.
    Cho J, Choi K, Darden T, Reynolds PR, Petitte JN, Shears SB (2006) Avian multiple inositol polyphosphate phosphatase is an active phytase that can be engineered to help ameliorate the planet’s “phosphate crisis”. J Biotechnol 126:248–259PubMedCrossRefGoogle Scholar
  15. 15.
    Tiensin T, Chaitaweesub P, Songserm T, Chaisingh A, Hoonsuwan W et al (2005) Highly pathogenic avian influenza H5N1, Thailand, 2004. Emerg Infect Dis 11:1664–1672PubMedCrossRefGoogle Scholar
  16. 16.
    Wall RJ, Powell A, Paape MJ, Kerr DA, Bannermann SS, Pursel CG, Well KD, Talbot N, Hawk HW (2005) Genetically enhanced cows resist intramammary Staphylococcus aureus infection. Nat Biotechnol 23:445–451PubMedCrossRefGoogle Scholar
  17. 17.
    Gordon JW, Scangos GA, Plotkin DJ, Barbosa JA, Ruddle FH (1980) Genetic transformation of mouse embryos by microinjection of purified DNA. Proc Natl Acad Sci USA 77:7380–7384PubMedCrossRefGoogle Scholar
  18. 18.
    Hammer RE, Pursel VG, Rexroad CE, Wall RJ, Bolt DJ, Ebert KM, Palmiter RD, Brinster RL (1985) Production of transgenic rabbits, sheep and pigs by microinjection. Nature 315:680–683PubMedCrossRefGoogle Scholar
  19. 19.
    Mullins JJ, Peters J, Ganten D (1990) Fulminant hypertension in transgenic rats harbouring the mouse Ren-2 gene. Nature 344:541–544PubMedCrossRefGoogle Scholar
  20. 20.
    Krimpenfort P, Rademakers A, Eyestone W, van der Schans A, van den Broek S, Kooiman P, Kootwijk E, Platenburg G, Pieper F, Strijker R, de Boer H (1991) Generation of transgenic dairy cattle using ‘in vitro’ embryo production. Biotechnology (N Y) 9:844–847CrossRefGoogle Scholar
  21. 21.
    Kochav S, Ginsburg M, Eyal-Giladi H (1980) From cleavage to primitive streak formation: a complementary normal table and a new look at the first stages of the development of the chick. II. Microscopic anatomy and cell population dynamics. Dev Biol 79:296–308PubMedCrossRefGoogle Scholar
  22. 22.
    Perry MM (1988) A complete culture system for the chick embryo. Nature 331:70–72PubMedCrossRefGoogle Scholar
  23. 23.
    Love J, Gribbin C, Mather C, Sang H (1994) Transgenic birds by DNA microinjection. Biotechnology 12:60–63PubMedCrossRefGoogle Scholar
  24. 24.
    Naito M, Sasaki E, Ohtaki M, Sakurai M (1994) Introduction of exogenous DNA into somatic and germ cells of chickens by microinjection into the germinal disc of fertilized ova. Mol Reprod Dev 37:167–171PubMedCrossRefGoogle Scholar
  25. 25.
    Salter DW, Smith EJ, Hughes SH, Wright SE, Fadly AM, Witter RL, Crittenden LB (1986) Gene insertion into the chicken germ line by retroviruses. Poult Sci 65:1445–1458PubMedCrossRefGoogle Scholar
  26. 26.
    Salter DW, Smith EJ, Hughes SH, Wright SE, Crittenden LB (1987) Transgenic chickens: insertion of retroviral genes into the chicken germ line. Virology 157:236–240PubMedCrossRefGoogle Scholar
  27. 27.
    Chen HY, Garber EA, Mills E, Smith J, Kopchick JJ, DiLella AG, Smith RG (1990) Vectors, promoters, and expression of genes in chick embryos. J Reprod Fertil Suppl 41:173–1782PubMedGoogle Scholar
  28. 28.
    U.S. Food and Drug Administration (2009) Guidance for industry #187: regulation of genetically engineered animals containing heritable recombinant DNA constructs. Final GuidanceGoogle Scholar
  29. 29.
    Romano G, Marino IR, Pentimalli F, Adamo V, Giordano A (2009) Insertional mutagenesis and development of malignancies induced by integrating gene delivery systems: implications for the design of safer gene-based interventions in patients. Drug News Perspect 22:185–196PubMedCrossRefGoogle Scholar
  30. 30.
    Jahner D, Stuhlmann H, Stewart CL, Harbers K, Lohler J, Simon I, Jaenisch R (1982) De novo methylation and expression of retroviral genomes during mouse embryogenesis. Nature 298:623–628PubMedCrossRefGoogle Scholar
  31. 31.
    Pannell D, Ellis J (2001) Silencing of gene expression: implications for design of retrovirus vectors. Rev Med Virol 11:205–217PubMedCrossRefGoogle Scholar
  32. 32.
    Bosselman RA, Hsu R-Y, Boggs T, Hu S, Bruszewski J, Ou S, Kozar L, Martin F, Green C, Jacobsen F, Nicolson M, Schultz JA, Semon KM, Rishell W, Stewart RG (1989) Germline transmission of exogenous genes in the chicken. Science 243:533–535PubMedCrossRefGoogle Scholar
  33. 33.
    Thoraval P, Afanassieff M, Cosset FL, Lasserre F, Verdier G, Coudert F, Dambrine G (1995) Germline transmission of exogenous genes in chickens using helper-free ecotropic avian leukosis virus-based vectors. Transgenic Res 4:369–377PubMedCrossRefGoogle Scholar
  34. 34.
    Harvey AJ, Speksnijder G, Baugh LR, Morris JA, Ivarie R (2002) Expression of exogenous protein in the egg white of transgenic chickens. Nat Biotechnol 20:396–399PubMedCrossRefGoogle Scholar
  35. 35.
    Mozdziak PE, Borwornpinyo S, McCoy DW, Petitte JN (2003) Development of transgenic chickens expressing bacterial beta-galactosidase. Dev Dyn 226:439–445PubMedCrossRefGoogle Scholar
  36. 36.
    Kwon MS, Koo BC, Choi BR, Park YY, Lee YM, Suh HS, Park YS, Lee HT, Kim JH, Roh JY, Kim NH, Kim T (2008) Generation of transgenic chickens that produce bioactive human granulocyte-colony stimulating factor. Mol Reprod Dev 75:1120–1126PubMedCrossRefGoogle Scholar
  37. 37.
    Mizuarai S, Ono K, Yamaguchi K, Nishijima K, Kamihara M, Iijima S (2001) Production of transgenic quails with high frequency of germline transmission using VSV-G pseudotyped retroviral vector. Biochem Biophys Res Commun 286:456–463PubMedCrossRefGoogle Scholar
  38. 38.
    Kamihira M, Ono K, Esaka K, Nishijima K, Kigaku R, Komatsu H, Yamashita T, Kyogoku K, Iijima S (2005) High-level expression of single-chain Fv-Fc fusion protein in serum and egg white of genetically manipulated chickens by using a retroviral vector. J Virol 79:10864–10874PubMedCrossRefGoogle Scholar
  39. 39.
    Koo BC, Kwon MS, Choi BR, Kim JH, Cho SK, Sohn SH, Cho EJ, Lee HT, Chang W, Jeon I, Park JK, Park JB, Kim T (2006) Production of germline transgenic chickens expressing enhanced green fluorescent protein using a MoMLV-based retrovirus vector. FASEB J 20:2251–2260PubMedCrossRefGoogle Scholar
  40. 40.
    Cockrell AS, Kafri T (2007) Gene delivery by lentivirus vectors. Mol Biotechnol 36:184–204PubMedCrossRefGoogle Scholar
  41. 41.
    Wang Y, Song Y-T, Liu Q, Liu C, Wang L-L, Liu Y, Zhou X-Y, Wu J, Wei H (2010) Quantitative analysis of lentiviral transgene expression in mice over seven generations. Transgenic Res 19:775–784Google Scholar
  42. 42.
    Lois C, Hong EJ, Pease S, Brown EJ, Baltimore D (2002) Germline transmission and tissue-specific expression of transgenes delivered by lentiviral vectors. Science 295:868–872PubMedCrossRefGoogle Scholar
  43. 43.
    Pfeifer A, Ikawa M, Dayn Y, Verma IM (2002) Transgenesis by lentiviral vectors: lack of gene silencing in mammalian embryonic stem cells and preimplantation embryos. Proc Natl Acad Sci USA 99:2140–2145PubMedCrossRefGoogle Scholar
  44. 44.
    Hamra FK, Gatlin J, Chapman KM, Grellhesl DM, Garcia JV, Hammer RE, Garbers DL (2002) Production of transgenic rats by lentiviral transduction of male germ-line stem cells. Proc Natl Acad Sci USA 99:14931–14936PubMedCrossRefGoogle Scholar
  45. 45.
    Hofmann A, Kessler B, Ewerling S, Weppert M, Vogg B, Ludwig H, Stojkovic M, Boelhauve M, Brem G, Wolf E, Pfeifer A (2003) Efficient transgenesis in farm animals by lentiviral vectors. EMBO Rep 4:1054–1060PubMedCrossRefGoogle Scholar
  46. 46.
    Ritchie WA, King T, Neil C, Carlisle AJ, Lillico S, McLachlan G, Whitelaw CB (2009) Transgenic sheep designed for transplantation studies. Mol Reprod Dev 76:61–64PubMedCrossRefGoogle Scholar
  47. 47.
    Hiripi L, Negre D, Cosset FL, Kvell K, Czömpöly T, Baranyi M, Gócza E, Hoffmann O, Bender B, Bősze Z (2010) Transgenic rabbit production with simian immunodeficiency virus-derived lentiviral vector. Transgenic Res Epub:Jan 13Google Scholar
  48. 48.
    Sasaki E, Suemizu H, Shimada A, Hanazawa K, Oiwa R, Kamioka M, Tomioka I, Sotomaru Y, Hirakawa R, Eto T, Shiozawa S, Maeda T, Ito M, Ito R, Kito C, Yagihashi C, Kawai K, Miyoshi H, Tanioka Y, Tamaoki N, Habu S, Okano H, Nomura T (2009) Generation of transgenic non-human primates with germline transmission. Nature 459:523–527PubMedCrossRefGoogle Scholar
  49. 49.
    McGrew MJ, Sherman AS, Ellard FM, Lillico SG, Gilhooley HJ, Mitrophanous KA, Kingsman AJ, Sang H (2004) Efficient production of germline transgenic chickens using lentiviral vectors. EMBO Rep 5:728–733PubMedCrossRefGoogle Scholar
  50. 50.
    Kim JN, Park TS, Park SH, Park KJ, Kim TM, Lee SK, Lim JM, Han JY (2010) Migration and proliferation of intact and genetically modified primordial germ cells and the generation of a transgenic chicken. Biol Reprod 82:257–262PubMedCrossRefGoogle Scholar
  51. 51.
    McGrew MJ, Lillico SG, Sherman A, Taylor L, Sang H (2010) Functional conservation between rodents and chicken of regulatory sequences driving skeletal muscle gene expression in transgenic chickens. BMC Dev Biol 10:e26CrossRefGoogle Scholar
  52. 52.
    Scott BB, Lois C (2005) Generation of tissue-specific transgenic birds with lentiviral vectors. Proc Natl Acad Sci USA 102:16443–16447PubMedCrossRefGoogle Scholar
  53. 53.
    Poynter G, Lansford R (2008) Generating transgenic quail using lentiviruses. Methods Cell Biol 87:281–293PubMedCrossRefGoogle Scholar
  54. 54.
    Shin SS, Kim TM, Kim SY, Kim TW, Seo HW, Lee SK, Kwon SC, Lee GS, Kim H, Lim JM, Han JY (2008) Generation of transgenic quail through germ cell-mediated germline transmission. FASEB J 22:2435–2444PubMedCrossRefGoogle Scholar
  55. 55.
    Agate RJ, Scott BB, Haripal B, Lois C, Nottebohm F (2009) Transgenic songbirds offer an opportunity to develop a genetic model for vocal learning. Proc Natl Acad Sci USA 106:17963–17967PubMedCrossRefGoogle Scholar
  56. 56.
    Kwon SC, Choi JW, Jang HJ, Shin SS, Lee SK, Park TS, Choi IY, Lee GS, Song G, Han JY (2010) Production of biofunctional recombinant human interleukin 1 receptor antagonist (rhIL1RN) from transgenic quail egg white. Biol Reprod 82:1057–1064Google Scholar
  57. 57.
    McClintock B (1953) Induction of instability at selected loci in maize. Genetics 38:579–599PubMedGoogle Scholar
  58. 58.
    Feschotte C, Pritham EJ (2007) DNA transposons and the evolution of eukaryotic genomes. Annu Rev Genet 41:331–368PubMedCrossRefGoogle Scholar
  59. 59.
    Ivics Z, Li MA, Mátés L, Boeke JD, Nagy A, Bradley A, Zsuzsanna I (2009) Transposon-mediated genome manipulation in vertebrates. Nat Meth 6:415–422CrossRefGoogle Scholar
  60. 60.
    Ding S, Wu X, Li G, Han M, Zhuang Y, Xu T (2005) Efficient transposition of the piggyBac (PB) transposon in mammalian cells and mice. Cell 122:473–483PubMedCrossRefGoogle Scholar
  61. 61.
    Balciunas D, Wangensteen KJ, Wilber A, Bell J, Geurts A, Sivasubbu S, Wang X, Hackett PB, Largaespada DA, McIvor RS, Ekker SC (2006) Harnessing a high cargo-capacity transposon for genetic applications in vertebrates. PLoS Genet 2:e169PubMedCrossRefGoogle Scholar
  62. 62.
    Sherman A, Dawson A, Mather C, Gilhooley H, Li Y, Mitchell R, Finnegan D, Sang H (1998) Transposition of the Drosophila element mariner into the chicken germ line. Nat Biotechnol 16:1050–1053PubMedCrossRefGoogle Scholar
  63. 63.
    Sato Y, Kasai T, Nakagawa S, Tanabe K, Watanabe T, Kawakami K, Takahashi Y (2007) Stable integration and conditional expression of electroporated transgenes in chicken embryos. Dev Biol 305:616–624PubMedCrossRefGoogle Scholar
  64. 64.
    Lu Y, Lin C, Wang X (2009) PiggyBac transgenic strategies in the developing chicken spinal cord. Nucleic Acids Res 37:e141PubMedCrossRefGoogle Scholar
  65. 65.
    Petitte JN, Clark ME, Liu G, Verrinder-Gibbins AM, Etches RJ (1990) Production of somatic and germline chimeras in the chicken by transfer of early blastodermal cells. Development 108:185–189PubMedGoogle Scholar
  66. 66.
    Etches RJ, Clark ME, Toner A, Liu G, Gibbins AM (1996) Contributions to somatic and germline lineages of chicken blastodermal cells maintained in culture. Mol Reprod Dev 45:291–298PubMedCrossRefGoogle Scholar
  67. 67.
    Pain B, Clark M, Nakazawa H, Sakurai M, Samarut J, Etches R (1996) Long-term in vitro culture and characterization of avian embryonic stem cells with multiple morphogenetic potentialities. Development 122:2339–2348PubMedGoogle Scholar
  68. 68.
    Bezzubova O, Silbergleit A, Yamaguchi-Iwai Y, Takeda S, Buerstedde JM (1997) X-ray resistance and homologous recombination frequencies in a RAD54-/- mutant of the chicken DT40 cell line. Cell 89:185–193PubMedCrossRefGoogle Scholar
  69. 69.
    van de Lavoir MC, Mather-Love C, Leighton P, Diamond JH, Heyer BS, Roberts R, Zhu L, Winters-Digiacinto P, Kerchner A, Gessaro T, Swanberg S, Delany ME, Etches RJ (2005) High-grade transgenic somatic chimeras from chicken embryonic stem cells. Mech Dev 123:31–41PubMedCrossRefGoogle Scholar
  70. 70.
    Lavial F, Acloque H, Bachelard E, Nieto MA, Samarut J, Pain B (2009) Ectopic expression of Cvh (Chicken Vasa homologue) mediates the reprogramming of chicken embryonic stem cells to a germ cell fate. Dev Biol 330:73–82PubMedCrossRefGoogle Scholar
  71. 71.
    Tsunekawa N, Naito M, Sakai Y, Nishida T, Noce T (2000) Isolation of chicken vasa homolog gene and tracing the origin of primordial germ cells. Development 127:2741–2750PubMedGoogle Scholar
  72. 72.
    Eyal-Giladi H, Ginsburg M, Farbarov A (1981) Avian primordial germ cells are of epiblastic origin. J Embryol Exp Morphol 65:139–147PubMedGoogle Scholar
  73. 73.
    Simkiss K, Rowlett K, Bumstead N, Freeman BM (1989) Transfer of primordial germ cell DNA between embryos. Protoplasma 151:164–166CrossRefGoogle Scholar
  74. 74.
    Chang IK, Jeong DK, Hong YH, Park TS, Moon YK, Ohno T, Han JY (1997) Production of germline chimeric chickens by transfer of cultured primordial germ cells. Cell Biol Int 21:495–499PubMedCrossRefGoogle Scholar
  75. 75.
    Vick L, Li Y, Simkiss K (1993) Transgenic birds from transformed primordial germ cells. Proc Biol Sci 251:179–182PubMedCrossRefGoogle Scholar
  76. 76.
    Mozdziak PE, Wysocki R, Angerman-Stewart J, Pardue SL, Petitte JN (2006) Production of chick germline chimeras from fluorescence-activated cell-sorted gonocytes. Poult Sci 85:1764–1768PubMedGoogle Scholar
  77. 77.
    Tajima A, Naito M, Yasuda Y, Kuwana T (1993) Production of germ line chimera by transfer of primordial germ cells in the domestic chicken (Gallus domesticus). Theriogenology 40:509–519PubMedCrossRefGoogle Scholar
  78. 78.
    Ono T, Machida Y (1999) Immunomagnetic purification of viable primordial germ cells of Japanese quail (Coturnix japonica). Comp Biochem Physiol A Mol Integr Physiol 122:255–259PubMedCrossRefGoogle Scholar
  79. 79.
    Zhao DF, Kuwana T (2003) Purification of avian circulating primordial germ cells by nycodenz density gradient centrifugation. Br Poult Sci 44:30–35PubMedCrossRefGoogle Scholar
  80. 80.
    Park TS, Jeong DK, Kim JN, Song GW, Hong YH, Lim JM, Han JY (2003) Improved germline transmission in chicken chimeras produced by transplantation of gonadal primordial germ cells into recipient embryos. Biol Reprod 68:1657–1662PubMedCrossRefGoogle Scholar
  81. 81.
    Kalina J, Senigl F, Micáková A, Mucksová J, Blazková J, Yan H, Poplstein M, Hejnar J, Trefil P (2007) Retrovirus-mediated in vitro gene transfer into chicken male germ line cells. Reproduction 134:445–453PubMedCrossRefGoogle Scholar
  82. 82.
    Park TS, Hong YH, Kwon SC, Lim JM, Han JY (2003) Birth of germline chimeras by transfer of chicken embryonic germ (EG) cells into recipient embryos. Mol Reprod Dev 65:389–395PubMedCrossRefGoogle Scholar
  83. 83.
    van de Lavoir MC, Diamond JH, Leighton PA, Mather-Love C, Heyer BS, Bradshaw R, Kerchner A, Hooi LT, Gessaro TM, Swanberg SE, Delany ME, Etches RJ (2006) Germline transmission of genetically modified primordial germ cells. Nature 441:766–769PubMedCrossRefGoogle Scholar
  84. 84.
    Leighton PA, van de Lavoir MC, Diamond JH, Xia C, Etches RJ (2008) Genetic modification of primordial germ cells by gene trapping, gene targeting, and phiC31 integrase. Mol Reprod Dev 75:1163–1175PubMedCrossRefGoogle Scholar
  85. 85.
    Doyon Y, McCammon JM, Miller JC, Faraji F, Ngo C, Katibah GE, Amora R, Hocking TD, Zhang L, Rebar EJ, Gregory PD, Urnov FD, Amacher SL (2008) Heritable targeted gene disruption in zebrafish using designed zinc-finger nucleases. Nat Biotechnol 26:702–708PubMedCrossRefGoogle Scholar
  86. 86.
    Geurts AM, Cost GJ, Rémy S, Cui X, Tesson L, Usal C, Ménoret S, Jacob HJ, Anegon I, Buelow R (2010) Generation of gene-specific mutated rats using zinc-finger nucleases. Methods Mol Biol 597:211–225PubMedCrossRefGoogle Scholar
  87. 87.
    Petitte JN (2006) Avian germplasm preservation: embryonic stem cells or primordial germ cells? Poult Sci 85:237–242PubMedGoogle Scholar
  88. 88.
    Muñoz M, Trigal B, Molina I, Díez C, Caamaño JN, Gómez E (2009) Constraints to progress in embryonic stem cells from domestic species. Stem Cell Rev 5:6–9PubMedCrossRefGoogle Scholar

Books and Reviews

  1. Nieuwkoop PD, Sutasurya LA (1979) Primordal germ cells in the chordates. Cambridge University Press, CambridgeGoogle Scholar
  2. Petitte JD (2004) Isolation and maintenance of avian ES cells. In: Handbook of stem cells, vol 1, Embryonic stem cells. Elsevier, Amsterdam, pp 471–479, Chapter 44CrossRefGoogle Scholar
  3. Pfeifer A, Hofmann A (2009) Lentiviral transgenesis. Methods Mol Biol 530:391–405PubMedCrossRefGoogle Scholar
  4. Walsh G (2003) Biopharmeceuticals: biochemistry and biotechnology, 2nd edn. Wiley, ChichesterGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Michael J. McGrew
    • 1
  1. 1.Avian Germ Cell Laboratory, Division of Developmental BiologyThe Roslin Institute and Royal (Dick) School of Veterinary Studies, University of EdinburghRoslinUK