Skip to main content

Animal Molecular Genetics from Major Genes to Genomics

  • Reference work entry
  • 3491 Accesses

Definition of the Subject

Animal breeding is a major contributor to the vast improvements in animal production over decades. The main tool in breeding operations is selection; now, more and more attention is also paid to the amount and nature of genetic variation. It is on these topics that the chapter is built on. It starts from the fundamental methods in determining the genetic value of animals . The normal distribution and linear methods stemming from the concept of large number of loci with tiny effects causing variation are the base line. For quite some time, there have been observations on major loci causing deviation in linear prediction of genetic values. There is a part introducing methods to get around such cases and turning them advantageous by directly utilizing the variation mediated by major loci....

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   799.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

Additive genetic variance:

is usually the largest part of genetic variation in the quantitative trait and is due to average effects of genes. The change in mean caused by selection is proportional to the additive genetic variance.

BLUP:

is a short name for Best Linear Unbiased Prediction. It is now a norm in estimating breeding values within populations. It uses information on all kind of relatives and corrects the data for differences in production environment.

Breeding value:

of an individual is the expected value of its progeny relative to the population mean.

Candidate gene:

is a possible mutation underlying the mapped QTL. A positional candidate is a gene located in the same region as a mapped QTL. A biological candidate for a QTL is a gene which has a function related to the quantitative trait.

Effective population size (N e ):

is the number of individuals that with random mating result in the same rate of inbreeding as the population itself.

Genetic marker:

is a specific detectable sequence of DNA with a know location in the genome.

Heterosis:

Is the extent to which the performance of crossbred animals is better than the mean of two parental populations.

Infinitesimal model:

assumes the genetic variation of a quantitative trait is due to infinitely many unlinked genes each with an infinitesimally small additive effect, so that selection produces negligible changes in gene frequency and variance at each locus.

Linkage disequilibrium:

is a non-random association of alleles across loci. Recombination between loci will gradually reduce the associations, more slowly the closer the loci are to each other. Adjacent markers with correlated allele frequencies could be used for mapping and selection.

Marker-assisted selection:

is selection on a quantitative trait where also the information on associated markers is used as a selection criterion. Gene-assisted selection is a special case where the marker is at the major gene causing the variation.

Mixed model equations:

are providing a method to simultaneously solve the predicted breeding values (random effects) for animals and estimate the fixed effects due to differences in production environment.

Morgan:

is the unit for a map distance in the genome.

Quantitative trait locus (QTL):

A short genomic region with a large effect on a quantitative trait.

Single nucleotide polymorphism (SNP):

is variation caused by a mutation at a single nucleotide.

Bibliography

Primary Literature

  1. Falconer DS, Mackay TFC (1996) Introduction to quantitative genetics, 4th edn. Longman, Harlow, 464 p

    Google Scholar 

  2. Weller JI (2009) Quantitative trait loci analysis in animals, 2nd edn. CABI, Wallingford

    Google Scholar 

  3. Henderson CR (1984) Applications of linear models in animal breeding. University of Guelph, Guelph

    Google Scholar 

  4. Henderson CR (1976) A simple method for computing the inverse of a numerator relationship matrix used for prediction of breeding values. Biometrics 32:69–79

    Article  Google Scholar 

  5. Wray NR, Hill WG (1989) Asymptotic rates of response from index selection. Anim Prod 49:217–227

    Article  Google Scholar 

  6. Smith SP, Mäki-Tanila A (1990) Genotypic covariance matrices and their inverses for models allowing dominance and inbreeding. Genet Sel Evol 122:65–91

    Article  Google Scholar 

  7. Silvela L (1980) Genetic changes with generations of artificial selection. Genetics 95:769–782

    PubMed  CAS  Google Scholar 

  8. Mäki-Tanila A (1982) The validity of the heritability concept. Ph.D. thesis, University of Edinburgh, 120 p

    Google Scholar 

  9. Mäki-Tanila A, Kennedy BW (1986) Mixed model methodology under genetic models with a small number of additive and non-additive loci. In: Proceedings of 3rd world congress on genetics applied to livestock production 12, Lincoln, pp 443–448

    Google Scholar 

  10. Webb AJ, Carden AE, Smith C, Imlah P (1982) Porcine stress syndrome in pig breeding. In: Proceedings of 2nd world congress on genetics applied to livestock production 5, pp 588–608

    Google Scholar 

  11. Merat P, Ricard FH (1974) Etude d’un Gene de nanisme lié au sexe chez la poule: importance de l’état d’engraissement et gain de poids chez l’adulte. Ann Genet Sel Anim 6:211–217

    PubMed  CAS  Google Scholar 

  12. Rollins WC, Tanaka M, Nott CFG, Theissen RB (1972) On the mode of inheritance of double muscled conformation in bovines. Hilgardia 41:433–456

    Google Scholar 

  13. Piper LR, Bindon BM (1982) The genetic segregation for fecundity in Booroola Merino sheep. In: Barton RA, Smith WC (eds) Proceedings of world congress on sheep and beef cattle breeding. Dunmore, Palmerston North, pp 315–331

    Google Scholar 

  14. Lande R, Thompson R (1990) Efficiency of marker-assisted selection in the improvement of quantitative traits. Genetics 124:743–756

    PubMed  CAS  Google Scholar 

  15. Dekkers JCM (2004) Commercial application of marker- and gene-assisted selection in livestock: strategies and lessons. J Anim Sci 82:E313–E328

    PubMed  Google Scholar 

  16. Pong-Wong R, Woolliams JA (1998) Response to mass selection when an identified major gene is segregating. Genet Sel Evol 30:313–337

    Article  Google Scholar 

  17. Dekkers JCM, Hospital F (2002) The use of molecular genetics in the improvement of agricultural populations. Nat Rev Genet 3:22–32

    Article  PubMed  CAS  Google Scholar 

  18. Yancovich A, Levin I, Cahaner A, Hillel J (1996) Introgression of the avian naked neck gene assisted by DNA fingerprint. Anim Genet 27:149–155

    Article  CAS  Google Scholar 

  19. Knap PW, Neeteson-Van Nieuwenhoven AMA (2005) Private and public roles in conservation. In: Proceedings of options and strategies for conservation of FAnGR., Montpellier, pp 62–67

    Google Scholar 

  20. Bidanel JP (1989) Etude de stratégies de valorisation en croisement de la race Meishan. 3 – evaluation comparée de différents systèmes de croisement. J Rech Porcine en France 21:361–366

    Google Scholar 

  21. Legault C (1998) Génétique et prolificité chez la truie: la voie hyperprolifique et la voie sino-européenne. INRA Prod Anim 11:214–218

    Google Scholar 

  22. Lynch M, Walsh B (1998) Genetics and analysis of quantitative traits. Sinauer, Sunderland

    Google Scholar 

  23. Elston RC, Stewart J (1973) The analysis of quantitative traits for simple genetic models from parental, F1 and backcross data. Genetics 73:695–711

    PubMed  CAS  Google Scholar 

  24. Neimann-Sorensen A, Robertson A (1961) The association between blood groups and several production characteristics in three Danish cattle breeds. Acta Agric Scand 11:163–196

    Article  Google Scholar 

  25. Soller M, Genizi A (1978) The efficiency of experimental designs for the detection of linkage between a marker locus and a locus affecting a quantitative trait in segregating populations. Biometrics 34:47–55

    Article  Google Scholar 

  26. Lander ES, Botstein D (1989) Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121:185–199

    PubMed  CAS  Google Scholar 

  27. Haley CS, Knott SA (1992) A simple regression method for mapping quantitative trait loci in line crosses using flanking markers. Heredity 69:315–324

    Article  PubMed  CAS  Google Scholar 

  28. Georges M (2007) Mapping, fine mapping, and molecular dissection of quantitative trait loci in domestic animals. Annu Rev Genomics Hum Genet 8:131–162

    Article  PubMed  CAS  Google Scholar 

  29. Andersson L, Haley CS, Ellegren H, Knott SA, Johansson M, Andersson K, Andersson-Eklund L, Edfors-Lilja I, Fredholm M, Hansson I et al (1994) Genetic mapping of quantitative trait loci for growth and fatness in pigs. Science 263:1771–1774

    Article  PubMed  CAS  Google Scholar 

  30. Georges M, Nielsen D, Mackinnon M, Mishra A, Okimoto R, Pasquino AT, Sargeant LS, Sorensen A, Steele MR, Zhao X, Womack JE, Hoeschele I (1995) Mapping quantitative trait loci controlling milk production in dairy cattle by exploiting progeny testing. Genetics 139:907–920

    PubMed  CAS  Google Scholar 

  31. Darvasi A (1998) Experimental strategies for the genetic dissection of complex traits in animal models. Nat Genet 18:19–24

    Article  PubMed  CAS  Google Scholar 

  32. Weller J, Kashi Y, Soller M (1990) Power of daughter and granddaughter designs for determining linkage between marker loci and quantitative trait loci in dairy cattle. J Dairy Sci 73:2525–2537

    Article  PubMed  CAS  Google Scholar 

  33. Mackay TF (2009) The genetic architecture of complex behaviors: lessons from Drosophila. Genetica 136:295–302

    Article  PubMed  Google Scholar 

  34. Calus MP, Meuwissen TH, Windig JJ, Knol EF, Schrooten C, Vereijken AL, Veerkamp RF (2009) Effects of the number of markers per haplotype and clustering of haplotypes on the accuracy of QTL mapping and prediction of genomic breeding values. Genet Sel Evol 41:11

    Article  PubMed  CAS  Google Scholar 

  35. Farnir F, Coppieters W, Arranz JJ, Berzi P, Cambisano N, Grisart B, Karim L, Marcq F, Moreau L, Mni M, Nezer C, Simon P, Vanmanshoven P, Wagenaar D, Georges M (2000) Extensive genome-wide linkage disequilibrium in cattle. Genome Res 10:220–227

    Article  PubMed  CAS  Google Scholar 

  36. Meuwissen THE, Goddard ME (2004) Mapping multiple QTL using linkage disequilibrium and linkage analysis information and multitrait data. Genet Sel Evol 36:261–279

    Article  PubMed  CAS  Google Scholar 

  37. Goddard ME, Meuwissen TH (2005) The use of linkage disequilibrium to map quantitative trait loci. Aust J Exp Agric 45:837–845

    Article  CAS  Google Scholar 

  38. Meuwissen THE, Karlsen A, Lien S, Olsaker I, Goddard ME (2002) Fine mapping of a quantitative trait locus for twinning rate using combined linkage and linkage disequilibrium mapping. Genetics 161:373–379

    PubMed  CAS  Google Scholar 

  39. Spielman RS, McGinnis RE, Ewens WJ (1993) Transmission test for linkage disequilibrium: the sinsulin gene region and insulin dependent diabetes mellitus. Am J Hum Genet 52:506–516

    PubMed  CAS  Google Scholar 

  40. Grisart B, Farnir F, Karim L, Cambisano N, Kim JJ, Kvasz A, Mni M, Simon P, Frère JM, Coppieters W, Georges M (2004) Genetic and functional confirmation of the causality of the DGAT1 K232A quantitative trait nucleotide in affecting milk yield and composition. Proc Natl Acad Sci USA 101:2398–2403

    Article  PubMed  CAS  Google Scholar 

  41. Van Laere AS, Nguyen M, Braunschweig M, Nezer C, Collette C, Moreau L, Archibald AL, Haley CS, Buys N, Tally M, Andersson G, Georges M, Andersson L (2003) A regulatory mutation in IGF2 causes a major QTL effect on muscle growth in the pig. Nature 425:832–836

    Article  PubMed  CAS  Google Scholar 

  42. Andersson L (2009) Genome-wide association analysis in domestic animals: a powerful approach for genetic dissection of trait loci. Genetica 136:341–349

    Article  PubMed  CAS  Google Scholar 

  43. Clop A, Marcq F, Takeda H, Pirottin D, Tordoir X, Bibé B, Bouix J, Caiment F, Elsen JM, Eychenne F, Larzul C, Laville E, Meish F, Milenkovic D, Tobin J, Charlier C, Georges M (2006) A mutation creating a potential illegitimate microRNA target site in the myostatin gene affects muscularity in sheep. Nat Genet 38:813–818

    Article  PubMed  CAS  Google Scholar 

  44. Tabor HK, Risch NJ, Myers RM (2002) Candidate-gene approaches for studying complex genetic traits: practical considerations. Nat Rev Genet 3:391–397

    Article  PubMed  CAS  Google Scholar 

  45. Zhu M, Zhao S (2007) Candidate gene identification approach: progress and challenges. Int J Biol Sci 3:420–427

    Article  PubMed  CAS  Google Scholar 

  46. Maher B (2008) Personal genomes: the case of the missing heritability. Nature 456:18–21

    Article  PubMed  CAS  Google Scholar 

  47. Hill WG (2010) Understanding and using quantitative genetic variation. Phil Trans R Soc B 365:73–85

    Article  PubMed  Google Scholar 

  48. Yang J, Benyamin B, McEvoy BP, Gordon S, Henders AK, Nyholt DR, Madden PA, Heath AC, Martin N, Montgomery GW, Goddard ME, Visscher PM (2010) Common SNPs explain a large proportion of the heritability for human height. Nat Genet 42:565–569

    Article  PubMed  CAS  Google Scholar 

  49. Karim L, Takeda H, Lin L, Druet T, Arias JA, Baurain D, Cambisano N, Davis SR, Farnir F, Grisart B, Harris BL, Keehan MD, Littlejohn MD, Spelman RJ, Georges M, Coppieters W (2011) Variants modulating the expression of a chromosome domain encompassing PLAG1 influence bovine stature. Nat Genet 43:405–413

    Article  PubMed  CAS  Google Scholar 

  50. Wallis JW, Aerts J, Groenen MAM, Crooijmans RPMA, Layman D, Graves TA, Scheer DE, Kremitzki C, Fedele MJ, Mudd NK, Cardenas M, Higginbotham J, Carter J, McGrane R, Gaige T, Mead K, Walker J, Albracht D, Davito J, Yang S-P, Leong S, Chinwalla A, Sekhon M, Wylie K, Dodgson J, Romanov MN, Cheng H, de Jong PJ, Osoegawa K, Nefedov M, Zhang H, McPherson JD, Krzywinski M, Schein J, Hillier L, Mardis ER, Wilson RK, Warren WC (2004) A physical map of the chicken genome. Nature 432:761–764

    Article  PubMed  CAS  Google Scholar 

  51. Bovine Genome Sequencing and Analysis Consortium (2009) The genome sequence of taurine cattle: a window to ruminant biology and evolution. Science 324:522–528

    Article  CAS  Google Scholar 

  52. Meadows JRS, Hawken RJ, Kijas JW (2004) Nucleotide diversity on the ovine Y chromosome. Anim Genet 35:379–385

    Article  PubMed  CAS  Google Scholar 

  53. Hillier LW, Miller W, Birney E et al (2004) Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution. Nature 432:695–716 (International Chicken Genome Sequencing Consortium)

    Article  CAS  Google Scholar 

  54. Fernando RL, Grossman M (1989) Marker assisted selection using best linear unbiased prediction. Genet Sel Evol 21:467–477

    Article  Google Scholar 

  55. Meuwissen THE, Goddard ME (1996) The use of marker haplotypes in animal breeding schemes. Genet Sel Evol 28:161–176

    Article  Google Scholar 

  56. Meuwissen THE, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics 157:1819–1829

    PubMed  CAS  Google Scholar 

  57. Goddard ME (2009) Genomic selection: prediction of accuracy and maximisation of long term response. Genetica 136:245–257

    Article  PubMed  Google Scholar 

  58. Legarra A, Aguilar I, Misztal I (2009) A relationship matrix including full pedigree and genomic information. J Dairy Sci 92:4656–4663

    Article  PubMed  CAS  Google Scholar 

  59. Wall JD, Pritchard JK (2003) Haplotype blocks and linkage disequilibrium in the human genome. Nat Rev Genet 4:587–597

    Article  PubMed  CAS  Google Scholar 

  60. Daetwyler HD, Villanueva B, Woolliams JA (2008) Accuracy of predicting the genetic risk of disease using a genome-wide approach. PLoS One 3:e3395

    Article  PubMed  CAS  Google Scholar 

  61. Schaeffer LR (2006) Strategy for applying genome-wide selection in dairy cattle. J Anim Breed Genet 123:218–223

    Article  PubMed  CAS  Google Scholar 

  62. VanRaden PM, VanTassell CP, Wiggans GR, Sonstegard TS, Schnabel RD, Taylor JF, Schenkel FS (2009) Invited review: reliability of genomic predictions for North American Holstein bulls. J Dairy Sci 74:2737–2746

    Article  Google Scholar 

  63. De Roos APW, Schrooten C, Mullaart E, van der Beek S, de Jong G, Voskamp W (2009) Genomic selection at CRV. Interbull Bull 39:47–50

    Google Scholar 

  64. Woolliams J, Berg P, Mäki-Tanila A, Meuwissen T, Fimland E (2005) Sustainable management of animal genetic resources. NGH Nordisk Genbank Husdyr, Norway, 95 p

    Google Scholar 

  65. Meuwissen THE (1997) Maximizing the response of selection with a predefined rate of inbreeding. J Anim Sci 75:934–940

    PubMed  CAS  Google Scholar 

  66. Daetwyler HD, Villanueva B, Bijma P, Woolliams JA (2007) Inbreeding in genome-wide selection. J Anim Breed Genet 124:369–376

    Article  PubMed  CAS  Google Scholar 

  67. Fernandez J, Villaneuva B, Pong-Wong R, Toro MA (2005) Efficiency of the use of pedigree and molecular marker information in conservation programmes. Genetics 170:1313–1321

    Article  PubMed  CAS  Google Scholar 

  68. Sonesson AK, Woolliams JA, Meuwissen THE (2010) Maximising genetic gain whilst controlling rates of genomic inbreeding using genomicoptimum contribution selection. In: Ninth world congress on genetics applied to livestock production, Leipzig

    Google Scholar 

  69. Ødegård J, Yazdi MH, Sonesson AK, Meuwissen TH (2009) Incorporating desirable genetic characteristics from an inferior into a superior population using genomic selection. Genetics 181:737–745

    Article  PubMed  Google Scholar 

  70. Comstock RE, Robinson HF, Harvey PH (1949) A breeding procedure designed to make maximum use of both general and specific combining ability. J Am Soc Agron 41:360–367

    Article  Google Scholar 

  71. Lo LL, Fernando RL, Cantet RJC, Grossman M (1995) Theory for modelling means and covariances in a two-breed population with dominance inheritance. Theor Appl Genet 90:49–62

    Article  Google Scholar 

  72. Toro MA, Mäki-Tanila A (2007) Genomics reveals domestication history and facilitates breed development. In: Oldenbroek K (ed) Utilisation and conservation of farm animal genetic resources. Wageningen Academic, The Netherlands, pp 75–102, 232 p

    Google Scholar 

  73. Xu S (2003) Estimating polygenic effects using markers of the entire genome. Genetics 163:789–801

    PubMed  CAS  Google Scholar 

  74. Toro MA, Varona L (2010) A note on mate allocation for dominance handling in genomic selection. Genet Sel Evol 42:33. http://www.gsejournal.org/content/42/1/33

  75. Shuster DE, Kehrli ME, Ackermann MR, Gilbert RO (1992) Identification and prevalence of a genetic defect that causes leukocyte adhesion deficiency in Holstein cattle. Proc Natl Acad Sci USA 89:9225–9229

    Article  PubMed  CAS  Google Scholar 

  76. Charlier C, Coppieters W, Rollin F, Desmecht D, Agerholm JS, Cambisano N, Carta E, Dardano S, Dive M, Fasquelle C, Frennet JC, Hanset R, Hubin X, Jorgensen C, Karim L, Kent M, Harvey K, Pearce BR, Simon P, Tama N, Nie H, Vandeputte S, Lien S, Longeri M, Fredholm M, Harvey RJ, Georges M (2008) Highly effective SNP-based association mapping and management of recessive defects in livestock. Nat Genet 40:449–454

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

I am grateful to colleagues, especially Pekka Uimari, at MTT, for useful comments on the draft of the text, and to Ignacy Misztal for lots of encouragement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asko Mäki-Tanila .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this entry

Cite this entry

Mäki-Tanila, A. (2013). Animal Molecular Genetics from Major Genes to Genomics. In: Christou, P., Savin, R., Costa-Pierce, B.A., Misztal, I., Whitelaw, C.B.A. (eds) Sustainable Food Production. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5797-8_336

Download citation

Publish with us

Policies and ethics