Sustainable Food Production

2013 Edition
| Editors: Paul Christou, Roxana Savin, Barry A. Costa-Pierce, Ignacy Misztal, C. Bruce A. Whitelaw

Animal Molecular Genetics from Major Genes to Genomics

  • Asko Mäki-Tanila
Reference work entry
DOI: https://doi.org/10.1007/978-1-4614-5797-8_336

Definition of the Subject

Animal breeding is a major contributor to the vast improvements in animal production over decades. The main tool in breeding operations is selection; now, more and more attention is also paid to the amount and nature of genetic variation. It is on these topics that the chapter is built on. It starts from the fundamental methods in determining the genetic value of animals . The normal distribution and linear methods stemming from the concept of large number of loci with tiny effects causing variation are the base line. For quite some time, there have been observations on major loci causing deviation in linear prediction of genetic values. There is a part introducing methods to get around such cases and turning them advantageous by directly utilizing the variation mediated by major loci. The longest section is on introducing molecular genetic tools to find areas in the genome harboring such major loci and to further characterize the actual underlying...

This is a preview of subscription content, log in to check access.

Notes

Acknowledgment

I am grateful to colleagues, especially Pekka Uimari, at MTT, for useful comments on the draft of the text, and to Ignacy Misztal for lots of encouragement.

Bibliography

Primary Literature

  1. 1.
    Falconer DS, Mackay TFC (1996) Introduction to quantitative genetics, 4th edn. Longman, Harlow, 464 pGoogle Scholar
  2. 2.
    Weller JI (2009) Quantitative trait loci analysis in animals, 2nd edn. CABI, WallingfordGoogle Scholar
  3. 3.
    Henderson CR (1984) Applications of linear models in animal breeding. University of Guelph, GuelphGoogle Scholar
  4. 4.
    Henderson CR (1976) A simple method for computing the inverse of a numerator relationship matrix used for prediction of breeding values. Biometrics 32:69–79CrossRefGoogle Scholar
  5. 5.
    Wray NR, Hill WG (1989) Asymptotic rates of response from index selection. Anim Prod 49:217–227CrossRefGoogle Scholar
  6. 6.
    Smith SP, Mäki-Tanila A (1990) Genotypic covariance matrices and their inverses for models allowing dominance and inbreeding. Genet Sel Evol 122:65–91CrossRefGoogle Scholar
  7. 7.
    Silvela L (1980) Genetic changes with generations of artificial selection. Genetics 95:769–782PubMedGoogle Scholar
  8. 8.
    Mäki-Tanila A (1982) The validity of the heritability concept. Ph.D. thesis, University of Edinburgh, 120 pGoogle Scholar
  9. 9.
    Mäki-Tanila A, Kennedy BW (1986) Mixed model methodology under genetic models with a small number of additive and non-additive loci. In: Proceedings of 3rd world congress on genetics applied to livestock production 12, Lincoln, pp 443–448Google Scholar
  10. 10.
    Webb AJ, Carden AE, Smith C, Imlah P (1982) Porcine stress syndrome in pig breeding. In: Proceedings of 2nd world congress on genetics applied to livestock production 5, pp 588–608Google Scholar
  11. 11.
    Merat P, Ricard FH (1974) Etude d’un Gene de nanisme lié au sexe chez la poule: importance de l’état d’engraissement et gain de poids chez l’adulte. Ann Genet Sel Anim 6:211–217PubMedGoogle Scholar
  12. 12.
    Rollins WC, Tanaka M, Nott CFG, Theissen RB (1972) On the mode of inheritance of double muscled conformation in bovines. Hilgardia 41:433–456Google Scholar
  13. 13.
    Piper LR, Bindon BM (1982) The genetic segregation for fecundity in Booroola Merino sheep. In: Barton RA, Smith WC (eds) Proceedings of world congress on sheep and beef cattle breeding. Dunmore, Palmerston North, pp 315–331Google Scholar
  14. 14.
    Lande R, Thompson R (1990) Efficiency of marker-assisted selection in the improvement of quantitative traits. Genetics 124:743–756PubMedGoogle Scholar
  15. 15.
    Dekkers JCM (2004) Commercial application of marker- and gene-assisted selection in livestock: strategies and lessons. J Anim Sci 82:E313–E328PubMedGoogle Scholar
  16. 16.
    Pong-Wong R, Woolliams JA (1998) Response to mass selection when an identified major gene is segregating. Genet Sel Evol 30:313–337CrossRefGoogle Scholar
  17. 17.
    Dekkers JCM, Hospital F (2002) The use of molecular genetics in the improvement of agricultural populations. Nat Rev Genet 3:22–32PubMedCrossRefGoogle Scholar
  18. 18.
    Yancovich A, Levin I, Cahaner A, Hillel J (1996) Introgression of the avian naked neck gene assisted by DNA fingerprint. Anim Genet 27:149–155CrossRefGoogle Scholar
  19. 19.
    Knap PW, Neeteson-Van Nieuwenhoven AMA (2005) Private and public roles in conservation. In: Proceedings of options and strategies for conservation of FAnGR., Montpellier, pp 62–67Google Scholar
  20. 20.
    Bidanel JP (1989) Etude de stratégies de valorisation en croisement de la race Meishan. 3 – evaluation comparée de différents systèmes de croisement. J Rech Porcine en France 21:361–366Google Scholar
  21. 21.
    Legault C (1998) Génétique et prolificité chez la truie: la voie hyperprolifique et la voie sino-européenne. INRA Prod Anim 11:214–218Google Scholar
  22. 22.
    Lynch M, Walsh B (1998) Genetics and analysis of quantitative traits. Sinauer, SunderlandGoogle Scholar
  23. 23.
    Elston RC, Stewart J (1973) The analysis of quantitative traits for simple genetic models from parental, F1 and backcross data. Genetics 73:695–711PubMedGoogle Scholar
  24. 24.
    Neimann-Sorensen A, Robertson A (1961) The association between blood groups and several production characteristics in three Danish cattle breeds. Acta Agric Scand 11:163–196CrossRefGoogle Scholar
  25. 25.
    Soller M, Genizi A (1978) The efficiency of experimental designs for the detection of linkage between a marker locus and a locus affecting a quantitative trait in segregating populations. Biometrics 34:47–55CrossRefGoogle Scholar
  26. 26.
    Lander ES, Botstein D (1989) Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121:185–199PubMedGoogle Scholar
  27. 27.
    Haley CS, Knott SA (1992) A simple regression method for mapping quantitative trait loci in line crosses using flanking markers. Heredity 69:315–324PubMedCrossRefGoogle Scholar
  28. 28.
    Georges M (2007) Mapping, fine mapping, and molecular dissection of quantitative trait loci in domestic animals. Annu Rev Genomics Hum Genet 8:131–162PubMedCrossRefGoogle Scholar
  29. 29.
    Andersson L, Haley CS, Ellegren H, Knott SA, Johansson M, Andersson K, Andersson-Eklund L, Edfors-Lilja I, Fredholm M, Hansson I et al (1994) Genetic mapping of quantitative trait loci for growth and fatness in pigs. Science 263:1771–1774PubMedCrossRefGoogle Scholar
  30. 30.
    Georges M, Nielsen D, Mackinnon M, Mishra A, Okimoto R, Pasquino AT, Sargeant LS, Sorensen A, Steele MR, Zhao X, Womack JE, Hoeschele I (1995) Mapping quantitative trait loci controlling milk production in dairy cattle by exploiting progeny testing. Genetics 139:907–920PubMedGoogle Scholar
  31. 31.
    Darvasi A (1998) Experimental strategies for the genetic dissection of complex traits in animal models. Nat Genet 18:19–24PubMedCrossRefGoogle Scholar
  32. 32.
    Weller J, Kashi Y, Soller M (1990) Power of daughter and granddaughter designs for determining linkage between marker loci and quantitative trait loci in dairy cattle. J Dairy Sci 73:2525–2537PubMedCrossRefGoogle Scholar
  33. 33.
    Mackay TF (2009) The genetic architecture of complex behaviors: lessons from Drosophila. Genetica 136:295–302PubMedCrossRefGoogle Scholar
  34. 34.
    Calus MP, Meuwissen TH, Windig JJ, Knol EF, Schrooten C, Vereijken AL, Veerkamp RF (2009) Effects of the number of markers per haplotype and clustering of haplotypes on the accuracy of QTL mapping and prediction of genomic breeding values. Genet Sel Evol 41:11PubMedCrossRefGoogle Scholar
  35. 35.
    Farnir F, Coppieters W, Arranz JJ, Berzi P, Cambisano N, Grisart B, Karim L, Marcq F, Moreau L, Mni M, Nezer C, Simon P, Vanmanshoven P, Wagenaar D, Georges M (2000) Extensive genome-wide linkage disequilibrium in cattle. Genome Res 10:220–227PubMedCrossRefGoogle Scholar
  36. 36.
    Meuwissen THE, Goddard ME (2004) Mapping multiple QTL using linkage disequilibrium and linkage analysis information and multitrait data. Genet Sel Evol 36:261–279PubMedCrossRefGoogle Scholar
  37. 37.
    Goddard ME, Meuwissen TH (2005) The use of linkage disequilibrium to map quantitative trait loci. Aust J Exp Agric 45:837–845CrossRefGoogle Scholar
  38. 38.
    Meuwissen THE, Karlsen A, Lien S, Olsaker I, Goddard ME (2002) Fine mapping of a quantitative trait locus for twinning rate using combined linkage and linkage disequilibrium mapping. Genetics 161:373–379PubMedGoogle Scholar
  39. 39.
    Spielman RS, McGinnis RE, Ewens WJ (1993) Transmission test for linkage disequilibrium: the sinsulin gene region and insulin dependent diabetes mellitus. Am J Hum Genet 52:506–516PubMedGoogle Scholar
  40. 40.
    Grisart B, Farnir F, Karim L, Cambisano N, Kim JJ, Kvasz A, Mni M, Simon P, Frère JM, Coppieters W, Georges M (2004) Genetic and functional confirmation of the causality of the DGAT1 K232A quantitative trait nucleotide in affecting milk yield and composition. Proc Natl Acad Sci USA 101:2398–2403PubMedCrossRefGoogle Scholar
  41. 41.
    Van Laere AS, Nguyen M, Braunschweig M, Nezer C, Collette C, Moreau L, Archibald AL, Haley CS, Buys N, Tally M, Andersson G, Georges M, Andersson L (2003) A regulatory mutation in IGF2 causes a major QTL effect on muscle growth in the pig. Nature 425:832–836PubMedCrossRefGoogle Scholar
  42. 42.
    Andersson L (2009) Genome-wide association analysis in domestic animals: a powerful approach for genetic dissection of trait loci. Genetica 136:341–349PubMedCrossRefGoogle Scholar
  43. 43.
    Clop A, Marcq F, Takeda H, Pirottin D, Tordoir X, Bibé B, Bouix J, Caiment F, Elsen JM, Eychenne F, Larzul C, Laville E, Meish F, Milenkovic D, Tobin J, Charlier C, Georges M (2006) A mutation creating a potential illegitimate microRNA target site in the myostatin gene affects muscularity in sheep. Nat Genet 38:813–818PubMedCrossRefGoogle Scholar
  44. 44.
    Tabor HK, Risch NJ, Myers RM (2002) Candidate-gene approaches for studying complex genetic traits: practical considerations. Nat Rev Genet 3:391–397PubMedCrossRefGoogle Scholar
  45. 45.
    Zhu M, Zhao S (2007) Candidate gene identification approach: progress and challenges. Int J Biol Sci 3:420–427PubMedCrossRefGoogle Scholar
  46. 46.
    Maher B (2008) Personal genomes: the case of the missing heritability. Nature 456:18–21PubMedCrossRefGoogle Scholar
  47. 47.
    Hill WG (2010) Understanding and using quantitative genetic variation. Phil Trans R Soc B 365:73–85PubMedCrossRefGoogle Scholar
  48. 48.
    Yang J, Benyamin B, McEvoy BP, Gordon S, Henders AK, Nyholt DR, Madden PA, Heath AC, Martin N, Montgomery GW, Goddard ME, Visscher PM (2010) Common SNPs explain a large proportion of the heritability for human height. Nat Genet 42:565–569PubMedCrossRefGoogle Scholar
  49. 49.
    Karim L, Takeda H, Lin L, Druet T, Arias JA, Baurain D, Cambisano N, Davis SR, Farnir F, Grisart B, Harris BL, Keehan MD, Littlejohn MD, Spelman RJ, Georges M, Coppieters W (2011) Variants modulating the expression of a chromosome domain encompassing PLAG1 influence bovine stature. Nat Genet 43:405–413PubMedCrossRefGoogle Scholar
  50. 50.
    Wallis JW, Aerts J, Groenen MAM, Crooijmans RPMA, Layman D, Graves TA, Scheer DE, Kremitzki C, Fedele MJ, Mudd NK, Cardenas M, Higginbotham J, Carter J, McGrane R, Gaige T, Mead K, Walker J, Albracht D, Davito J, Yang S-P, Leong S, Chinwalla A, Sekhon M, Wylie K, Dodgson J, Romanov MN, Cheng H, de Jong PJ, Osoegawa K, Nefedov M, Zhang H, McPherson JD, Krzywinski M, Schein J, Hillier L, Mardis ER, Wilson RK, Warren WC (2004) A physical map of the chicken genome. Nature 432:761–764PubMedCrossRefGoogle Scholar
  51. 51.
    Bovine Genome Sequencing and Analysis Consortium (2009) The genome sequence of taurine cattle: a window to ruminant biology and evolution. Science 324:522–528CrossRefGoogle Scholar
  52. 52.
    Meadows JRS, Hawken RJ, Kijas JW (2004) Nucleotide diversity on the ovine Y chromosome. Anim Genet 35:379–385PubMedCrossRefGoogle Scholar
  53. 53.
    Hillier LW, Miller W, Birney E et al (2004) Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution. Nature 432:695–716 (International Chicken Genome Sequencing Consortium)CrossRefGoogle Scholar
  54. 54.
    Fernando RL, Grossman M (1989) Marker assisted selection using best linear unbiased prediction. Genet Sel Evol 21:467–477CrossRefGoogle Scholar
  55. 55.
    Meuwissen THE, Goddard ME (1996) The use of marker haplotypes in animal breeding schemes. Genet Sel Evol 28:161–176CrossRefGoogle Scholar
  56. 56.
    Meuwissen THE, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics 157:1819–1829PubMedGoogle Scholar
  57. 57.
    Goddard ME (2009) Genomic selection: prediction of accuracy and maximisation of long term response. Genetica 136:245–257PubMedCrossRefGoogle Scholar
  58. 58.
    Legarra A, Aguilar I, Misztal I (2009) A relationship matrix including full pedigree and genomic information. J Dairy Sci 92:4656–4663PubMedCrossRefGoogle Scholar
  59. 59.
    Wall JD, Pritchard JK (2003) Haplotype blocks and linkage disequilibrium in the human genome. Nat Rev Genet 4:587–597PubMedCrossRefGoogle Scholar
  60. 60.
    Daetwyler HD, Villanueva B, Woolliams JA (2008) Accuracy of predicting the genetic risk of disease using a genome-wide approach. PLoS One 3:e3395PubMedCrossRefGoogle Scholar
  61. 61.
    Schaeffer LR (2006) Strategy for applying genome-wide selection in dairy cattle. J Anim Breed Genet 123:218–223PubMedCrossRefGoogle Scholar
  62. 62.
    VanRaden PM, VanTassell CP, Wiggans GR, Sonstegard TS, Schnabel RD, Taylor JF, Schenkel FS (2009) Invited review: reliability of genomic predictions for North American Holstein bulls. J Dairy Sci 74:2737–2746CrossRefGoogle Scholar
  63. 63.
    De Roos APW, Schrooten C, Mullaart E, van der Beek S, de Jong G, Voskamp W (2009) Genomic selection at CRV. Interbull Bull 39:47–50Google Scholar
  64. 64.
    Woolliams J, Berg P, Mäki-Tanila A, Meuwissen T, Fimland E (2005) Sustainable management of animal genetic resources. NGH Nordisk Genbank Husdyr, Norway, 95 pGoogle Scholar
  65. 65.
    Meuwissen THE (1997) Maximizing the response of selection with a predefined rate of inbreeding. J Anim Sci 75:934–940PubMedGoogle Scholar
  66. 66.
    Daetwyler HD, Villanueva B, Bijma P, Woolliams JA (2007) Inbreeding in genome-wide selection. J Anim Breed Genet 124:369–376PubMedCrossRefGoogle Scholar
  67. 67.
    Fernandez J, Villaneuva B, Pong-Wong R, Toro MA (2005) Efficiency of the use of pedigree and molecular marker information in conservation programmes. Genetics 170:1313–1321PubMedCrossRefGoogle Scholar
  68. 68.
    Sonesson AK, Woolliams JA, Meuwissen THE (2010) Maximising genetic gain whilst controlling rates of genomic inbreeding using genomicoptimum contribution selection. In: Ninth world congress on genetics applied to livestock production, LeipzigGoogle Scholar
  69. 69.
    Ødegård J, Yazdi MH, Sonesson AK, Meuwissen TH (2009) Incorporating desirable genetic characteristics from an inferior into a superior population using genomic selection. Genetics 181:737–745PubMedCrossRefGoogle Scholar
  70. 70.
    Comstock RE, Robinson HF, Harvey PH (1949) A breeding procedure designed to make maximum use of both general and specific combining ability. J Am Soc Agron 41:360–367CrossRefGoogle Scholar
  71. 71.
    Lo LL, Fernando RL, Cantet RJC, Grossman M (1995) Theory for modelling means and covariances in a two-breed population with dominance inheritance. Theor Appl Genet 90:49–62CrossRefGoogle Scholar
  72. 72.
    Toro MA, Mäki-Tanila A (2007) Genomics reveals domestication history and facilitates breed development. In: Oldenbroek K (ed) Utilisation and conservation of farm animal genetic resources. Wageningen Academic, The Netherlands, pp 75–102, 232 pGoogle Scholar
  73. 73.
    Xu S (2003) Estimating polygenic effects using markers of the entire genome. Genetics 163:789–801PubMedGoogle Scholar
  74. 74.
    Toro MA, Varona L (2010) A note on mate allocation for dominance handling in genomic selection. Genet Sel Evol 42:33. http://www.gsejournal.org/content/42/1/33
  75. 75.
    Shuster DE, Kehrli ME, Ackermann MR, Gilbert RO (1992) Identification and prevalence of a genetic defect that causes leukocyte adhesion deficiency in Holstein cattle. Proc Natl Acad Sci USA 89:9225–9229PubMedCrossRefGoogle Scholar
  76. 76.
    Charlier C, Coppieters W, Rollin F, Desmecht D, Agerholm JS, Cambisano N, Carta E, Dardano S, Dive M, Fasquelle C, Frennet JC, Hanset R, Hubin X, Jorgensen C, Karim L, Kent M, Harvey K, Pearce BR, Simon P, Tama N, Nie H, Vandeputte S, Lien S, Longeri M, Fredholm M, Harvey RJ, Georges M (2008) Highly effective SNP-based association mapping and management of recessive defects in livestock. Nat Genet 40:449–454PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Biotechnology and Food ResearchMTT Agrifood Research FinlandJokioinenFinland