Skip to main content

Microstructural Behavior and Fracture in Crystalline Materials: Overview

  • Reference work entry
  • First Online:
  • 5224 Accesses

Abstract

A dislocation-density-based multiple-slip crystalline plasticity framework, which accounts for variant morphologies and orientation relationships (ORs) that are uniquely inherent to lath martensitic microstructures, and a dislocation-density grain-boundary (GB) interaction scheme, which is based on dislocation-density transmission and blockage at variant boundaries, are developed and used to predict stress accumulation or relaxation at the variant interfaces. A microstructural failure criterion, which is based on resolving these stresses on martensitic cleavage planes, and specialized finite-element (FE) methodologies using overlapping elements to represent evolving fracture surfaces are used for a detailed analysis of fracture nucleation and intergranular and transgranular crack growth in martensitic steels. The effects of block and packet boundaries are investigated, and the results indicate that the orientation of the cleavage planes in relation to the slip planes and the lath morphology are the dominant factors that characterize specific failure modes. The block and packet sizes along the lath long direction are the key microstructural features that affect toughening mechanisms, such as crack arrest and deflection, and these mechanisms can be used to control the nucleation and propagation of different failure modes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   649.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • R.J. Asaro, J.R. Rice, Strain localization in ductile single-crystals. J. Mech. Phys. Solids 25, 309–338 (1977)

    Article  MATH  Google Scholar 

  • M. Ayada, M. Yuga, N. Tsuji, Y. Saito, A. Yoneguti, Effect of vanadium and niobium on restoration behavior after hot deformation in medium carbon spring steels. ISIJ Int. 38, 1022–1031 (1998)

    Article  Google Scholar 

  • A.A. Barani, F. Li, P. Romano, D. Ponge, D. Raabe, Design of high-strength steels by microalloying and thermomechanical treatment. Mater. Sci. Eng. A 463, 138–146 (2007)

    Article  Google Scholar 

  • M. de Koning, R. Miller, V.V. Bulatov, F. Abraham, Modelling grain-boundary resistance in intergranular slip transmission. Philos. Mag. A 82, 2511–2527 (2002)

    Article  Google Scholar 

  • B. Devincre, T. Hoc, L. Kubin, Dislocation mean free paths and strain hardening of crystals. Science 320, 1745–1748 (2008)

    Article  Google Scholar 

  • B. Dodd, Y. Bai, Width of adiabatic shear bands. Mater. Sci. Tech. 1, 38–40 (1985)

    Article  Google Scholar 

  • P. Franciosi, M. Berveiller, A. Zaoui, Latent hardening in copper and aluminum single-crystals. Acta Metall. 28, 273–283 (1980)

    Article  Google Scholar 

  • Z. Guo, C.S. Lee, J.W. Morris, On coherent transformations in steel. Acta Mater. 52, 5511–5518 (2004)

    Article  Google Scholar 

  • A. Hansbo, P. Hansbo, A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Comput. Methods Appl. Mech. Eng. 193, 3523–3540 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • T. Hatem, M.A. Zikry, Shear pipe effects and dynamic shear–strain localization in martensitic steels. Acta Mater. 57, 4558–4567 (2009)

    Article  Google Scholar 

  • A.A. Howe, Ultrafine grained steels: industrial prospects. Mater. Sci. Tech. 16, 1264–1266 (2000)

    Article  Google Scholar 

  • G.M. Hughes, G.E. Smith, A.G. Crocker, P.E.J. Flewitt, An experimental and modelling study of brittle cleavage crack propagation in transformable ferritic steel. Mater. Sci. Tech. 27, 767–773 (2011)

    Article  Google Scholar 

  • T. Inoue, S. Matsuda, Y. Okamura, K. Aoki, Fracture of a low carbon tempered martensite. Trans. Jpn. Inst. Metals 11, 36–43 (1970)

    Article  Google Scholar 

  • S. Jin, J.W. Morris, V.F. Zackay, Grain refinement through thermal cycling in an Fe–Ni–Ti cryogenic alloy. Met Trans. 6A, 141–149 (1975)

    Article  Google Scholar 

  • H. Kawata, K. Sakamoto, T. Moritani, S. Morito, T. Furuhara, T. Maki, Crystallography of ausformed upper bainite structure in Fe–9Ni–C alloys. Mater. Sci. Eng. A 438, 140–144 (2006)

    Article  Google Scholar 

  • H.J. Kim, Y.H. Kim, J.W. Morris, Thermal mechanisms of grain and packet refinement in a lath martensitic steel. ISIJ Int. 38, 1277–1285 (1998)

    Article  Google Scholar 

  • Y. Kimura, T. Inoue, F. Yin, K. Tsuzaki, Inverse temperature dependence of toughness in an ultrafine grain-structure steel. Science 320, 1057–1060 (2008)

    Article  Google Scholar 

  • G. Krauss, Martensite in steel: strength and structure. Mater. Sci. Eng. A 273–275, 40–57 (1999)

    Article  Google Scholar 

  • L. Kubin, B. Devincre, T. Hoc, Towards a physical model for strain hardening in fcc crystals. Mater. Sci. Eng. A 483–484, 19–24 (2008a)

    Article  Google Scholar 

  • L. Kubin, B. Devincre, T. Hoc, Modeling dislocation storage rates and mean free paths in face-centered cubic crystals. Acta Mater. 56, 6040–6049 (2008b)

    Article  Google Scholar 

  • T.C. Lee, I.M. Robertson, H.K. Birnbaim, An in situ transmission electron-microscope deformation study of the slip transfer mechanisms in metals. Metall. Trans. A 21, 2437–2447 (1990)

    Article  Google Scholar 

  • A. Ma, F. Roter, D. Raabe, Studying the effect of grain boundaries in dislocation density based crystal-plasticity finite element simulations. Int. J. Solids Struct. 43, 7287–7303 (2006)

    Article  MATH  Google Scholar 

  • R. Madec, L.P. Kubin, Second order junctions and strain hardening in bcc and fcc crystals. Scripta Mater. 58, 767–770 (2008)

    Article  Google Scholar 

  • T. Maki, K. Tsuzaki, I. Tamura, The morphology of microstructure composed of lath martensites in steels. Trans. Iron Steel Inst. Jpn. 20, 207 (1980)

    Google Scholar 

  • S. Matsuda, Y. Okamura, T. Inoue, H. Mimura, Toughness and effective grain-size in heat-treated low-alloy high-strength steels. Trans. Iron Steel Inst. Jpn. 12, 325–333 (1972)

    Google Scholar 

  • K. Minaar, M. Zhou, An analysis of the dynamic shear failure resistance of structural metals. J. Mech. Phys. Solids 46, 2155–2170 (1998)

    Article  Google Scholar 

  • S. Morito, H. Tanaka, R. Konoshi, T. Furuhara, T. Maki, The morphology and crystallography of lath martensite in Fe–C alloys. Acta Mater. 51, 1789–1799 (2003)

    Article  Google Scholar 

  • S. Morito, X. Huang, T. Furuhara, T. Maki, N. Hansen, The morphology and crystallography of lath martensite in alloy steels. Acta Mater. 54, 5323–5331 (2006)

    Article  Google Scholar 

  • J.W. Morris, On the ductile–brittle transition in lath martensitic steel. ISIJ Int. 51, 1569–1575 (2011)

    Article  Google Scholar 

  • J.W. Morris, Z. Guo, C.R. Krenn, Y.H. Kim, The limits of strength and toughness in steel. ISIJ Int. 41, 599–611 (2011)

    Article  Google Scholar 

  • T. Ohmura, K. Tsuzaki, Plasticity initiation and subsequent deformation behavior in the vicinity of single grain boundary investigated through nanoindentation technique. J. Mater. Res. 42, 1728–1732 (2007)

    Google Scholar 

  • T. Ohmura, A.M. Minor, E.A. Starch, J.W. Morris, Dislocation-grain boundary interactions in martensitic steel observed through in situ nanoindentation in a transmission electron microscope. J. Mater. Res. 12, 3626–3632 (2004)

    Article  Google Scholar 

  • S. Queyreau, G. Monnet, B. Devincre, Slip systems interactions in alpha-iron determined by dislocation dynamics simulations. Int. J. Plast. 25, 361–377 (2009)

    Article  MATH  Google Scholar 

  • P. Shanthraj, M.A. Zikry, Dislocation density evolution and interactions in crystalline materials. Acta Mater. 59, 7695–7702 (2011)

    Article  Google Scholar 

  • P. Shanthraj, M.A. Zikry, Dislocation-density mechanisms for void interactions in crystalline materials. Int. J. Plast. 34, 154–163 (2012a)

    Article  Google Scholar 

  • P. Shanthraj, M.A. Zikry, Optimal microstructures for martensitic steels. J. Mater. Res. 27, 1598–1611 (2012b)

    Article  Google Scholar 

  • A. Shibata, T. Nagoshi, M. Sone, S. Morito, Y. Higo, Evaluation of the block boundary and sub-block boundary strengths of ferrous lath martensite using a micro-bending test. Mater. Sci. Eng. A 29, 7538–7544 (2010)

    Article  Google Scholar 

  • R. Song, D. Ponge, D. Raabe, Mechanical properties of an ultrafine grained C–Mn steel processed by warm deformation and annealing. Acta Mater. 53, 4881–4892 (2005)

    Article  Google Scholar 

  • J.H. Song, M.A. Areias Pedro, T. Belytschko, A method for dynamic crack and shear band propagation with phantom nodes. Int. J. Numer. Methods Eng. 67, 868–893 (2006)

    Article  MATH  Google Scholar 

  • S. Takaki, K. Kawasaki, Y. Kimura, Mechanical properties of ultra fine grains steels. J. Mater. Process. Technol. 117, 359–363 (2001)

    Article  Google Scholar 

  • N. Tsuji, Y. Ito, Y. Saito, Y. Minamino, Strength and ductility of ultrafine grained aluminum and iron produced by ARB and annealing. Scripta Mater. 47, 893–899 (2002)

    Article  Google Scholar 

  • N. Tsuji, Y. Ito, Y. Saito, Y. Minamino, Toughness of ultrafine grained ferritic steels fabricated by ARB and annealing process. Mater. Trans. 45, 2272–2281 (2004)

    Article  Google Scholar 

  • N. Tsuji, N. Kamikawa, R. Ueji, N. Takata, H. Koyama, D. Terada, Managing both strength and ductility in ultrafine grained steels. ISIJ int. 48, 1114–1121 (2008)

    Article  Google Scholar 

  • M.A. Zikry, An accurate and stable algorithm for high strain-rate finite strain plasticity. Comput. Struct. 50, 337–350 (1994)

    Article  MATH  Google Scholar 

  • M.A. Zikry, M. Kao, Inelastic microstructural failure mechanisms in crystalline materials with high angle grain boundaries. J. Mech. Phys. Solids 44, 1765–1798 (1996)

    Article  Google Scholar 

Download references

Acknowledgments

Support from both the US Office of Naval Research Multi-Disciplinary University Research Initiative on Sound and Electromagnetic Interacting Waves under grant number N00014-10-1-0958 and from the Office of Naval Research under grant number10848631 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pratheek Shanthraj .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this entry

Cite this entry

Shanthraj, P., Zikry, M.A. (2015). Microstructural Behavior and Fracture in Crystalline Materials: Overview. In: Voyiadjis, G. (eds) Handbook of Damage Mechanics. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5589-9_8

Download citation

Publish with us

Policies and ethics