Skip to main content

Molecular Dynamics Simulations of Plastic Damage in Metals

  • Reference work entry
  • First Online:

Abstract

Presented in this chapter is an overview of molecular dynamics simulation (MDS) as applied to modeling damage in metals. This is followed by some examples that illustrate how this technique is being used in the engineering community to help understand how new materials can be made that have targeted mechanical properties.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   649.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • G.J. Ackland, Two-band second moment model for transition metals and alloys. J. Nucl. Mater. 351(1–3), 20–27 (2006)

    Article  Google Scholar 

  • B.J. Alder, T.E. Wainwright, Phase transition for a hard sphere system. J. Chem. Phys. 27(5), 1208 (1957)

    Article  Google Scholar 

  • M.P. Allen and D.J. Tildesley, Computer Simulation of Liquids (Oxford University Press, New York, 1989) ISBN-10: 0198556454

    Google Scholar 

  • J. Behler, Neural network potential-energy surfaces in chemistry: a tool for large-scale simulations. Phys. Chem. Chem Phy. PCCP 13(40), 17930–17955 (2011)

    Article  Google Scholar 

  • H.J.C. Berendsen, J.P.M. Postma, W.F. van Gunsteren, A. DiNola, J.R. Haak, Molecular dynamics with coupling to an external bath. J. Chem. Phys. 81(8), 3684 (1984)

    Article  Google Scholar 

  • G.P. Berman, F.M. Izrailev, The Fermi-Pasta-Ulam problem: fifty years of progress. Chaos. (Woodbury) 15(1), 15104 (2005)

    Article  MathSciNet  Google Scholar 

  • D.W. Brenner, The art and science of an analytic potential. Phys. Status Solidi B 217(1), 23–40 (2000)

    Article  Google Scholar 

  • D.W. Brenner, Challenges to marrying atomic and continuum modeling of materials. Curr. Opinion Solid State Mater. Sci. 17(6), 257–262 (2013)

    Article  Google Scholar 

  • D.W. Brenner and B.J. Garrison, Gas-Surface Reactions: Molecular Dynamics Simulations of Real Systems, in Adv. Chem. Phys, (Wiley, New York, K.P. Lawley, Ed.) Vol. 76, pp. 281–333 (1989)

    Google Scholar 

  • D.W. Brenner, O.A. Shenderova, D.A. Areshkin, Quantum-based analytic interatomic forces and materials simulation. Rev. Comput. Chem. 12, 207–239 (1998)

    Article  Google Scholar 

  • E.M. Bringa et al., Ultrahigh strength in nanocrystalline materials under shock loading. Science (New York) 309(5742), 1838–1841 (2005)

    Article  Google Scholar 

  • J.W. Cahn, J.E. Taylor, A unified approach to motion of grain boundaries, relative tangential translation along grain boundaries, and grain rotation. Acta Mater. 52(16), 4887–4898 (2004)

    Article  Google Scholar 

  • J.W. Cahn, Y. Mishin, A. Suzuki, Coupling grain boundary motion to shear deformation. Acta Mater. 54(19), 4953–4975 (2006)

    Article  Google Scholar 

  • R. Car, M. Parrinello, Unified approach for molecular dynamics and density-functional theory. Phys. Rev. Lett. 55(22), 2471–2474 (1985)

    Google Scholar 

  • J.W. Crill, X. Ji, D.L. Irving, D.W. Brenner, C.W. Padgett, Atomic and multi-scale modeling of non-equilibrium dynamics at metal–metal contacts. Model. Simul. Mater. Sci. Eng. 18(3), 034001 (2010)

    Article  Google Scholar 

  • J. D. Schall, C.W. Padgett, D.W. Brenner, Ad hoc continuum-atomistic thermostat for modeling heat flow in molecular dynamics simulations. Mol. Simul. 31(4), 283–288 (2005)

    Article  Google Scholar 

  • M. Daw, M. Baskes, Embedded-atom method: derivation and application to impurities, surfaces, and other defects in metals. Phys. Rev. B 29(12), 6443–6453 (1984)

    Article  Google Scholar 

  • M.S. Daw, S.M. Foiles, M.I. Baskes, The EAM is reviewed in: mater. Sci. Rep. 9, 251 (1993)

    Article  Google Scholar 

  • P. Derlet, A. Hasnaoui, H. Van Swygenhoven, Atomistic simulations as guidance to experiments. Scr. Mater. 49(7), 629–635 (2003)

    Article  Google Scholar 

  • A. Dongare, A. Rajendran, B. LaMattina, M. Zikry, D. Brenner, Atomic scale simulations of ductile failure micromechanisms in nanocrystalline Cu at high strain rates. Phys. Rev. B 80(10), 104108 (2009)

    Article  Google Scholar 

  • A.M. Dongare, A.M. Rajendran, B. LaMattina, M.A. Zikry, D.W. Brenner, Atomic scale studies of spall behavior in nanocrystalline Cu. J. Appl. Phys. 108(11), 113518 (2010)

    Article  Google Scholar 

  • A.M. Dongare et al., An angular-dependent embedded atom method (A-EAM) interatomic potential to model thermodynamic and mechanical behavior of Al/Si composite materials. Model. Simul. Mater. Sci. Eng. 20(3), 035007 (2012)

    Article  Google Scholar 

  • S.L. Dudarev, P.M. Derlet, A ‘magnetic’ interatomic potential for molecular dynamics simulations. J. Phys. Condens. Matter 17(44), 7097–7118 (2005)

    Article  Google Scholar 

  • V. Duin, C.T. Adri, S. Dasgupta, F. Lorant, W.A. Goddard, ReaxFF: a reactive force field for hydrocarbons. J. Phys. Chem. A 105(41), 9396–9409 (2001)

    Article  Google Scholar 

  • V. Dupont, T.C. Germann, Strain rate and orientation dependencies of the strength of single crystalline copper under compression. Phys. Rev. B 86(13), 134111 (2012)

    Article  Google Scholar 

  • F. Ercolessi, J.B. Adams, Interatomic potentials from first-principles calculations: the force-matching method. Europhys. Lett. (EPL) 26(8), 583–588 (1994)

    Article  Google Scholar 

  • F. Ercolessi, E. Tosatti, M. Parrinello, Au (100) surface reconstruction. Phys. Rev. Lett. 57(6), 719–722 (1986)

    Article  Google Scholar 

  • D. Farkas, W.A. Curtin, Plastic deformation mechanisms in nanocrystalline columnar grain structures. Mater. Sci. Eng. A 412(1–2), 316–322 (2005)

    Article  Google Scholar 

  • D. Farkas, H. Van Swygenhoven, P. Derlet, Intergranular fracture in nanocrystalline metals. Phys. Rev. B 66(6), 060101 (2002)

    Article  Google Scholar 

  • M.W. Finnis, J.E. Sinclair, A simple empirical N -body potential for transition metals. Philos. Mag. A 50(1), 45–55 (1984)

    Article  Google Scholar 

  • M. Furtkamp, G. Gottstein, D.A. Molodov, V.N. Semenov, L.S. Shvindlerman, Grain boundary migration in Fe–3.5 % Si bicrystals with [001] tilt boundaries. Acta Mater. 46(12), 4103–4110 (1998)

    Article  Google Scholar 

  • J.D. Gale, A.L. Rohl, The general utility lattice program (GULP). Mol. Simul. 29(5), 291–341 (2003)

    Article  MATH  Google Scholar 

  • J. Gibson, A. Goland, M. Milgram, G. Vineyard, Dynamics of radiation damage. Phys. Rev. 120(4), 1229–1253 (1960)

    Article  Google Scholar 

  • R.B.N. Godiksen, S. Schmidt, D. Juul Jensen, Molecular dynamics simulations of grain boundary migration during recrystallization employing tilt and twist dislocation boundaries to provide the driving pressure. Model. Simul. Mater. Sci. Eng. 16(6), 065002 (2008)

    Article  Google Scholar 

  • T. Gorkaya, D.A. Molodov, G. Gottstein, Stress-driven migration of symmetrical 〈100〉 tilt grain boundaries in Al bicrystals. Acta Mater. 57(18), 5396–5405 (2009)

    Article  Google Scholar 

  • G. Gottstein, D.A. Molodov, Grain boundary migration in metals: recent developments. Inter. Sci. 22, 7–22 (1998)

    Google Scholar 

  • G. Gottstein, L.S. Shvindlerman, Grain Boundary Migration in Metals: Thermodynamics, Kinetics, Applications. Materials Science & Technology, 2nd edn. (CRC Press, Boca Rotan, 2009)

    Book  Google Scholar 

  • A.J. Haslam et al., Effects of grain growth on grain-boundary diffusion creep by molecular-dynamics simulation. Acta Mater. 52(7), 1971–1987 (2004)

    Article  Google Scholar 

  • B. Hess, B. Thijsse, E. Van der Giessen, Molecular dynamics study of dislocation nucleation from a crack tip. Phys. Rev. B 71(5), 054111 (2005)

    Article  Google Scholar 

  • J. Hirschfelder, H. Eyring, B. Topley, Reactions involving hydrogen molecules and atoms. J. Chem. Phys. 4(3), 170 (1936)

    Article  Google Scholar 

  • B.L. Holian, P.S. Lomdahl, Plasticity induced by shock waves in nonequilibrium molecular-dynamics simulations. Science 280(5372), 2085–2088 (1998)

    Google Scholar 

  • J.D. Honeycutt, H.C. Andersen, Molecular dynamics study of melting and freezing of small Lennard-Jones clusters. J. Phys. Chem. 91(19), 4950–4963 (1987)

    Article  Google Scholar 

  • Y. Huang, F.J. Humphreys, Subgrain growth and low angle boundary mobility in aluminium crystals of orientation {110}〈001〉. Acta Mater. 48(8), 2017–2030 (2000)

    Article  Google Scholar 

  • D.L. Irving, C.W. Padgett, D.W. Brenner, Coupled molecular dynamics/continuum simulations of Joule heating and melting of isolated copper–aluminum asperity contacts. Model. Simul. Mater. Sci. Eng. 17(1), 015004 (2009a)

    Article  Google Scholar 

  • D.L. Irving, C.W. Padgett, J.W. Mintmire, D.W. Brenner, Multiscale modeling of metal–metal contact dynamics under high electromagnetic stress: timescales and mechanisms for joule melting of Al–Cu asperities. IEEE Trans. Magn. 45(1), 331–335 (2009b)

    Article  Google Scholar 

  • K. Jacobsen, J. Norskov, M. Puska, Interatomic interactions in the effective-medium theory. Phys. Rev. B 35(14), 7423–7442 (1987)

    Article  Google Scholar 

  • S. Jang, Y. Purohit, D.L. Irving et al., Influence of Pb segregation on the deformation of nanocrystalline Al: insights from molecular simulations. Acta Mater. 56(17), 4750–4761 (2008a)

    Article  Google Scholar 

  • S. Jang, Y. Purohit, D. Irving et al., Molecular dynamics simulations of deformation in nanocrystalline Al–Pb alloys. Mater. Sci. Eng. A 493(1–2), 53–57 (2008b)

    Article  Google Scholar 

  • K.G.F. Janssens et al., Computing the mobility of grain boundaries. Nat. Mater. 5(2), 124–127 (2006)

    Article  Google Scholar 

  • K.V. Jose, N.A. Jovan, J. Behler, Construction of high-dimensional neural network potentials using environment-dependent atom pairs. J. Chem. Phys. 136(19), 194111 (2012)

    Article  Google Scholar 

  • K. Kadau, T.C. Germann, P.S. Lomdahl, B.L. Holian, Microscopic view of structural phase transitions induced by shock waves. Science (New York) 296(5573), 1681–1684 (2002)

    Article  Google Scholar 

  • C. Kelchner, S. Plimpton, J. Hamilton, Dislocation nucleation and defect structure during surface indentation. Phys. Rev. B 58(17), 11085–11088 (1998)

    Article  Google Scholar 

  • B.-J. Lee, M. Baskes, Second nearest-neighbor modified embedded-atom-method potential. Phys. Rev. B 62(13), 8564–8567 (2000)

    Article  Google Scholar 

  • J. Li, AtomEye: an efficient atomistic configuration viewer. Model. Simul. Mater. Sci. Eng. 11(2), 173–177 (2003)

    Article  MATH  Google Scholar 

  • P.-W. Ma, S.L. Dudarev, C.H. Woo, Spin–lattice-electron dynamics simulations of magnetic materials. Phys. Rev. B 85(18), 184301 (2012)

    Article  Google Scholar 

  • D. Mathieu, Split charge equilibration method with correct dissociation limits. J. Chem. Phys. 127(22), 224103 (2007)

    Article  Google Scholar 

  • J.A. McCammon, B.R. Gelin, M. Karplus, Dynamics of folded proteins. Nature 267(5612), 585–590 (1977)

    Article  Google Scholar 

  • R.E. Miller, E.B. Tadmor, A unified framework and performance benchmark of fourteen multiscale atomistic/continuum coupling methods. Model. Simul. Mater. Sci. Eng. 17(5), 053001 (2009)

    Article  Google Scholar 

  • D. Molodov, V. Ivanov, G. Gottstein, Low angle tilt boundary migration coupled to shear deformation. Acta Mater. 55(5), 1843–1848 (2007)

    Article  Google Scholar 

  • F. Müller-Plathe, A simple nonequilibrium molecular dynamics method for calculating the thermal conductivity. J. Chem. Phys. 106(14), 6082 (1997)

    Article  Google Scholar 

  • R. Nistor, M. Müser, Dielectric properties of solids in the regular and split-charge equilibration formalisms. Phys. Rev. B 79(10), 104303 (2009)

    Article  Google Scholar 

  • R.A. Nistor, J.G. Polihronov, M.H. Müser, N.J. Mosey, A generalization of the charge equilibration method for nonmetallic materials. J. Chem. Phys. 125(9), 094108 (2006)

    Article  Google Scholar 

  • S. Nosé, A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 81(1), 511 (1984)

    Article  Google Scholar 

  • D.L. Olmsted, E.A. Holm, S.M. Foiles, Survey of computed grain boundary properties in face-centered cubic metals – II: grain boundary mobility. Acta Mater. 57(13), 3704–3713 (2009)

    Article  Google Scholar 

  • C.W. Padgett, D.W. Brenner, A continuum-atomistic method for incorporating Joule heating into classical molecular dynamics simulations. Mol. Simul. 31(11), 749–757 (2005)

    Article  Google Scholar 

  • M. Parrinello, A. Rahman, Polymorphic transitions in single crystals: a new molecular dynamics method. J. Appl. Phys. 52(12), 7182 (1981)

    Google Scholar 

  • S. Plimpton, Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117(1), 1–19 (1995)

    Article  MATH  Google Scholar 

  • A. Rahman, Correlations in the motion of atoms in liquid argon. Phys. Rev. 136(2A), A405–A411 (1964)

    Article  Google Scholar 

  • R.K. Rajgarhia, D.E. Spearot, A. Saxena, Molecular dynamics simulations of dislocation activity in single-crystal and nanocrystalline copper doped with antimony. Metall. Mater. Trans. A 41(4), 854–860 (2010)

    Article  Google Scholar 

  • R. Ravelo, B. Holian, T. Germann, P. Lomdahl, Constant-stress Hugoniostat method for following the dynamical evolution of shocked matter. Phys. Rev. B 70(1), 014103 (2004)

    Article  Google Scholar 

  • T.J. Rupert, D.S. Gianola, Y. Gan, K.J. Hemker, Experimental observations of stress-driven grain boundary migration. Science (New York) 326(5960), 1686–1690 (2009)

    Article  Google Scholar 

  • J.-P. Ryckaert, G. Ciccotti, H.J. Berendsen, Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J. Comput. Phys. 23(3), 327–341 (1977)

    Article  Google Scholar 

  • C. Schäfer, H. Urbassek, L. Zhigilei, Metal ablation by picosecond laser pulses: a hybrid simulation. Phys. Rev. B 66(11), 115404 (2002)

    Article  Google Scholar 

  • J. Schiøtz, T. Vegge, F. Di Tolla, K. Jacobsen, Atomic-scale simulations of the mechanical deformation of nanocrystalline metals. Phys. Rev. B 60(17), 11971–11983 (1999)

    Article  Google Scholar 

  • B. Schönfelder, G. Gottstein, L.S. Shvindlerman, Atomistic simulations of grain boundary migration in copper. Metall. Mater. Trans. A 37(6), 1757–1771 (2006)

    Article  Google Scholar 

  • T.-R. Shan et al., Second-generation charge-optimized many-body potential for Si/SiO2 and amorphous silica. Phys. Rev. B 82(23), 235302 (2010)

    Article  Google Scholar 

  • M.A. Shehadeh, E.M. Bringa, H.M. Zbib, J.M. McNaney, B.A. Remington, Simulation of shock-induced plasticity including homogeneous and heterogeneous dislocation nucleations. Appl. Phys. Lett. 89(17), 171918 (2006)

    Article  Google Scholar 

  • S.B. Sinnott, D.W. Brenner, Three decades of many-body potentials in materials research. MRS Bull. 37(05), 469–473 (2012)

    Article  Google Scholar 

  • F.H. Stillinger, Improved simulation of liquid water by molecular dynamics. J. Chem. Phys. 60(4), 1545 (1974)

    Article  Google Scholar 

  • A. Stukowski, K. Albe, Dislocation detection algorithm for atomistic simulations. Model. Simul. Mater. Sci. Eng. 18(2), 025016 (2010)

    Article  Google Scholar 

  • Z.T. Trautt, M. Upmanyu, A. Karma, Interface mobility from interface random walk. Science (New York) 314(5799), 632–635 (2006)

    Article  Google Scholar 

  • H. Van Swygenhoven, M. Spaczer, A. Caro, Microscopic description of plasticity in computer generated metallic nanophase samples: a comparison between Cu and Ni. Acta Mater. 47(10), 3117–3126 (1999)

    Article  Google Scholar 

  • H. Van Swygenhoven, P.M. Derlet, A.G. Frøseth, Stacking fault energies and slip in nanocrystalline metals. Nat. Mater. 3(6), 399–403 (2004)

    Article  Google Scholar 

  • A.F. Voter, A method for accelerating the molecular dynamics simulation of infrequent events. J. Chem. Phys. 106(11), 4665 (1997)

    Article  Google Scholar 

  • A. Voter, Parallel replica method for dynamics of infrequent events. Phys. Rev. B 57(22), R13985–R13988 (1998)

    Article  Google Scholar 

  • Y.M. Wang, E. Ma, M.W. Chen, Enhanced tensile ductility and toughness in nanostructured Cu. Appl. Phys. Lett. 80(13), 2395 (2002)

    Article  Google Scholar 

  • M. Winning, Motion of 〈100〉-tilt grain boundaries. Acta Mater. 51(20), 6465–6475 (2003)

    Article  Google Scholar 

  • M. Winning, G. Gottstein, On the mechanisms of grain boundary migration. Acta Mater. 50, 353–363 (2002)

    Article  Google Scholar 

  • M. Winning, A.D. Rollett, Transition between low and high angle grain boundaries. Acta Mater. 53(10), 2901–2907 (2005)

    Article  Google Scholar 

  • M. Wojdyr, S. Khalil, Y. Liu, I. Szlufarska, Energetics and structure of 〈001〉 tilt grain boundaries in SiC. Model. Simul. Mater. Sci. Eng. 18(7), 075009 (2010)

    Article  Google Scholar 

  • V. Yamakov, D. Wolf, M. Salazar, S.R. Phillpot, H. Gleiter, Length-scale effects in the nucleation of extended dislocations in nanocrystalline Al by molecular-dynamics simulation. Acta Mater. 49(14), 2713–2722 (2001)

    Article  Google Scholar 

  • F. Yuan, X. Wu, Shock response of nanotwinned copper from large-scale molecular dynamics simulations. Phys. Rev. B 86(13), 134108 (2012)

    Article  Google Scholar 

  • V.V. Zhakhovsky, M.M. Budzevich, N.A. Inogamov, I.I. Oleynik, C.T. White, Two-zone elastic–plastic single shock waves in solids. Phys. Rev. Lett. 107(13), 135502 (2011)

    Article  Google Scholar 

  • V.V. Zhakhovsky, M.M. Budzevich, N. Inogamov, C.T. White, I.I. Oleynik, Single Two-Zone Elastic–Plastic Shock Waves in Solids (2012), pp. 1227–32

    Google Scholar 

  • H. Zhang, M.I. Mendelev, D.J. Srolovitz, Computer simulation of the elastically driven migration of a flat grain boundary. Acta Mater. 52(9), 2569–2576 (2004)

    Article  Google Scholar 

  • J. Zhou, V. Mohles, Mobility evaluation of <110> twist grain boundary motion from molecular dynamics simulation. Steel Res. Int. 82(2), 114–118 (2011)

    Article  Google Scholar 

  • S. Zhou, D. Beazley, P. Lomdahl, B. Holian, Large-scale molecular dynamics simulations of three-dimensional ductile failure. Phys. Rev. Lett. 78(3), 479–482 (1997)

    Article  Google Scholar 

Download references

Acknowledgments

Unpublished work reported from our group was supported by the Office of Naval Research. DL is supported by the National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donald W. Brenner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this entry

Cite this entry

Lu, S., Li, D., Brenner, D.W. (2015). Molecular Dynamics Simulations of Plastic Damage in Metals. In: Voyiadjis, G. (eds) Handbook of Damage Mechanics. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5589-9_6

Download citation

Publish with us

Policies and ethics