Skip to main content

Micromechanical Polycrystalline Damage-Plasticity Modeling for Metal Forming Processes

  • Reference work entry
  • First Online:
Book cover Handbook of Damage Mechanics

Abstract

This chapter deals with the presentation of micromechanical modeling of the elastoplastic material behavior exhibiting ductile damage together with microstructural evolution in terms of grain rotation and phase transformation, under large inelastic strains. A description of the main experimental methods is proposed and multiscale measurements are discussed. For the mesoscopic scale, diffraction techniques are presented as well as microscopy’s results for a specific material. For the macroscopic scale, techniques of tensile test coupled with digital image correlation are described. This allows the damage measurement at different scales. Micromechanical modeling aspects based on the thermodynamics of irreversible processes with state variables defined at different scales are discussed. A non-exhaustive review of several possible models is given. These models depend on the hypothesis for the energy or strain equivalence and on the smallest scale considered. Two particular models are then detailed with their associated constitutive equations and the corresponding numerical aspects. Application is made to two different materials to test the ability of the model to be used for metal forming simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 649.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CDM:

Continuous damage mechanics

CRSS:

Critical resolved shear stress

DIC:

Digital image correlation

DSS:

Duplex stainless steel(s)

EBSD:

Electron backscatter diffraction

FEA:

Finite element analysis

ODF:

(Crystalline) orientation distribution function

RVE:

Representative volume element

SEM:

Scanning electron microscopy

X :

Zero-rank tensor = scalar variable

XRD:

X-ray diffraction

\( \overrightarrow{X} \) :

One-rank tensor = vector variable

\( \underset{\bar{\mkern6mu}}{X} \) :

Second-rank tensor

\( \underset{\bar{\mkern6mu}}{\underset{\bar{\mkern6mu}}{X}} \) :

Fourth-rank tensor

\( \underset{\bar{\mkern6mu}}{X}\cdot \underset{\bar{\mkern6mu}}{Y} \) :

Contraction between the second-rank tensors \( \underset{\bar{\mkern6mu}}{X} \) and \( \underset{\bar{\mkern6mu}}{Y} \)

\( \underset{\bar{\mkern6mu}}{X}:\underset{\bar{\mkern6mu}}{Y} \) :

Double contraction between the second-rank tensors \( \underset{\bar{\mkern6mu}}{X} \) and \( \underset{\bar{\mkern6mu}}{Y} \)

\( \underset{\bar{\mkern6mu}}{X}\otimes \underset{\bar{\mkern6mu}}{Y} \) :

Tensorial product between the second-rank tensors \( \underset{\bar{\mkern6mu}}{X} \) and \( \underset{\bar{\mkern6mu}}{Y} \)

〈〈X〉〉:

Macaulay brackets which means the positive part of a scalar X

\( {\left(\underset{\bar{\mkern6mu}}{X}\right)}^T\ \mathrm{or}\ {\left(\underset{\bar{\mkern6mu}}{\underset{\bar{\mkern6mu}}{X}}\right)}^T \) :

Transpose of X (second-rank or fourth-rank tensor)

\( \left\Vert \underset{\bar{\mkern6mu}}{X}\right\Vert =\sqrt{\underset{\bar{\mkern6mu}}{X}:\underset{\bar{\mkern6mu}}{X}/3} \) :

Euclidean norm of a second-rank tensor \( \underset{\bar{\mkern6mu}}{X} \)

\( \left\Vert \overrightarrow{X}\right\Vert =\sqrt{\overrightarrow{X}\cdot \overrightarrow{X}} \) :

Euclidean norm of a vector \( \overrightarrow{X} \)

x〉:

Average of the quantity x

Capital letters are for macroscopic or part quantities, whereas minuscule letters are for mesoscopic or microscopic ones.

References

  • L. Anand, Single-crystal elasto-viscoplasticity: application to texture evolution in polycrystalline metals at large strains. Comput. Meth. Appl. Mech. Eng. 193(48–51), 5359–5383 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • R. Asaro, V. Lubards, Mechanics of Solids and Materials (Cambridge University Press, Cambridge, 2006)

    Book  Google Scholar 

  • A. Baczmanski, Habilitation thesis: stress field in polycrystalline materials studied using diffraction and self-consistent modeling, Ph.D. thesis, Informatyki Stosowanej Akademia Gorniczo-Hutnicza Krakow, 2005

    Google Scholar 

  • A. Baczmanski, L. Le Joncour, B. Panicaud, M. Francois, C. Braham, A.M. Paradowska, S. Wronski, S. Amara, R. Chiron, Neutron time-of-flight diffraction used to study aged duplex stainless steel at small and large strain until sample fracture. J. Appl. Crystallogr. 44, 966–982 (2011)

    Article  Google Scholar 

  • J. Besson, G. Cailletaud, J-L. Chaboche, S. Forest, Mécanique non linéaire des Matériaux, 2001

    Google Scholar 

  • J.-P. Boehler. Lois de comportement anisotrope des milieux continus. Journal de Mécanique, 17 :153190, 1978

    MathSciNet  Google Scholar 

  • M. Bornert, T. Bretheau, P. Gilormini, Homogénéisation en Mécanique des Matériaux, Vols. 1 et 2 (ISTE USA, Newport Beach, 2001)

    Google Scholar 

  • M. Boudifa, Modélisation macro et micro-macro des matériaux polycristallins endommageables avec compressibilité induite, Ph.D. thesis, Université de Technologie de Troyes, 2006.

    Google Scholar 

  • M. Boudifa, K. Saanouni, J.L. Chaboche, A micromechanical model for inelastic ductile damage prediction in polycrystalline metals. Int. J. Mech. Sci. 51, 453–464 (2009)

    Article  Google Scholar 

  • B. Bugat, Comportement et endommagement des aciers austéno-ferritiques vieillis: une approche micromécanique, Ph.D. thesis, Ecole Nationale Supérieure des Mines de Paris, 2000.

    Google Scholar 

  • H.J. Bunge, Texture Analysis in Materials Science – Mathematical Methods (Butterworths, London, 1982)

    Google Scholar 

  • G. Cailletaud, S. Forest, D. Jeulin, F. Feyel, I. Galliet, V. Mounoury, S. Quilici, Some elements of microstructural mechanics. Comput. Mater. Sci. 27(3), 351–374 (2003)

    Article  Google Scholar 

  • V. Calonne, Propagation de fissures par fatigue dans les aciers austéno-ferritiques moulés; influence de la microstructure, du vieillissement et de la température d’essai, Ph.D. thesis, Ecole des mines de Paris, 2001

    Google Scholar 

  • S. Catalao, X. Feaugas, P. Pilvin, M.-T. Cabrillata, Dipole heights in cyclically deformed polycrystalline aisi 316l stainless steel. Mater. Sci. Eng. A 400–401, 349–352 (2005)

    Article  Google Scholar 

  • B.K. Chen, P.F. Thomson, S.K. Choi, Computer modeling of microstructure during hot flat rolling of aluminium. Mater. Sci. Technol. 8(1), 72–77 (1992)

    Article  Google Scholar 

  • J.H. Cho, P.R. Dawson, Modeling texture evolution during friction stir welding of stainless steel with comparison to experiments. J. Eng. Mater. Technol. 130, 1–12 (2008)

    Article  Google Scholar 

  • J.W. Christian, Plastic deformation of bcc metals, in International Conference on the Strength of Metals and Alloys (1970)

    Google Scholar 

  • B. Clausen, T. Lorentzen, M.A.M. Bourke, M.R. Daymond, Lattice strain evolution during uniaxial tensile loading of stainless steel. Mater. Sci. Eng. A 259, 17–24 (1999)

    Article  Google Scholar 

  • R. Dakhlaoui, Analyse du comportement mécanique des constituants d’un alliage polycristallin multiphasé par diffraction des rayons X et neutronique, Ph.D. thesis, Ecole Nationale Supérieur des Arts et Métier de Paris, 2006

    Google Scholar 

  • P. Dawson, D. Boyce, S. MacEwen, R. Rogge, On the influence of crystal elastic moduli on computed lattice strains in aa-5182 following plastic straining. Mater. Sci. Eng. A 313, 123–144 (2001)

    Article  Google Scholar 

  • P.R. Dawson, S.R. MacEwen, P.D. Wu, Advances in sheetmetal forming analyses: dealing with mechanical anisotropy from crystallographic texture. Int. Mater. Rev. 48(2), 86–122 (2003)

    Article  Google Scholar 

  • M.R. Daymond, The determination of a continuum mechanics equivalent elastic strain from the analysis of multiple diffraction peaks. J. Appl. Phys. 96, 4263–4272 (2004)

    Article  Google Scholar 

  • A. Desestret, J. Charles, Les aciers inoxydables austéno-ferritiques. Les aciers inoxydables, Les éditions de la physique 31–677 (1990)

    Google Scholar 

  • B. Devincre, L.P. Kubin, C. Lemarchand, R. Madec, Mesoscopic simulations of plastic deformation. Mater. Sci. Eng. A 309–310, 211–219 (2001)

    Article  Google Scholar 

  • X. Duan, T. Shepard, Simulation and control of microstructure evolution during hot extrusion of hard aluminium alloy. Mater. Sci. Eng. A 351(1/2), 282–292 (2003)

    Article  Google Scholar 

  • C. Eberl, R. Thompson, D. Gianola, Digital image correlation and tracking (2006). http://www.mathworks.com/matlabcentral/fileexchange/12413

  • A. El Bartali, Apport des mesures de champs cinématiques à l’étude des micromécanismes d’endommagement en fatigue plastique d’un acier inoxydable duplex, Ph.D. thesis, Ecole Centrale de Lille, 2007

    Google Scholar 

  • P. Evrard, Modélisation polycrystalline du comportement élastoplastique d’un acier inoxydable austéno-ferritique, Thèse de doctorat, Ecole Centrale de Lille, 2008

    Google Scholar 

  • P. Franciosi, The concept of latent hardening and strain hardening in metallic single crystals. Acta Metall. 33, 1601–1612 (1985)

    Article  Google Scholar 

  • D. François, A. Pineau, A. Zaoui, Comportement mécanique des matériaux: viscoplasticité, endommagement. mécanique de la rupture et mécanique du contact (1995)

    Google Scholar 

  • D. François, Endommagement et rupture des matériaux (2004)

    Google Scholar 

  • M. Frewer, More clarity on the concept of material frame-indifference in classical continuum mechanics. Acta Mech. 202, 213–246 (2009)

    Article  MATH  Google Scholar 

  • T. Furu, H.R. Shercliff, G.J. Baxter, C.M. Sellars, Influence of transient deformation conditions on recrystallization during thermomechanical processing of an Al-1% Mg alloy. Acta Mater. 47(8), 2377–2389 (1999)

    Article  Google Scholar 

  • W. Gambin, Plasticity and Textures (Kluwer, Dordrecht, 2001)

    Book  Google Scholar 

  • G. Gottstein, V. Marx, R. Sebald, Integration of physically-based models into FEM and application in simulation of metal forming processes. Model. Simul. Mater. Sci. Eng. 8(6), 881–891 (2000)

    Article  Google Scholar 

  • M. Grugicic, S. Batchu, Crystal plasticity analysis of earing in deep-drawn OFHC copper cups. J. Mater. Sci. 37, 753–764 (2002)

    Article  Google Scholar 

  • A.M. Habraken, L. Duchene, Anisotropic elasto-plastic finite element analysis using a stress-strain interpolation method based on a polycrystalline model. Int. J. Plasticity 20(8–9), 1525–1560 (2004)

    Article  MATH  Google Scholar 

  • K.S. Havner, Finite Plastic Deformation of Crystalline Solids (Cambridge University Press, Cambridge, 1992)

    Book  MATH  Google Scholar 

  • N. Hfaiedh, K. Saanouni, M. Francois, A. Roos, Self-consistent intragranular ductile damage modeling in large plasticity for FCC polycrystalline materials. Proc. Eng. 1, 229–232 (2009)

    Google Scholar 

  • N. Hfaiedh, Modélisation micromécanique des polycristaux – couplage plasticité, texture et endommagement, Ph.D. thesis, Université de Technologie de Troyes, 2009

    Google Scholar 

  • D. Hull, D.J. Bacon, Introduction to Dislocations (Butterworth–Heinemann, Oxford, 1995)

    Google Scholar 

  • K. Inal, R.K. Mishra, O. Cazacu, Forming simulation of aluminum sheets using an anisotropic yield function coupled with crystal plasticity theory. Int. J. Solids Struct. 47, 2223–2233 (2010)

    Article  MATH  Google Scholar 

  • S.R. Kalidindi, C.A. Bronkhorst, L. Anand, Crystallographic texture evolution in bulk deformation processing of FCC metals. J. Mech. Phys. Solids 40, 537–569 (1992)

    Article  Google Scholar 

  • C. Keller, E. Hug, R. Retoux, X. Feaugas, TEM study of dislocation patterns in near-surface and core regions of deformed nickel polycrystals with few grains across the cross section. Mech. Mater. 42, 44–54 (2010)

    Article  Google Scholar 

  • U.F. Kocks, C.N. Tomé, H.R. Wenk, Texture and Anisotropy: Preferred Orientations in Polycrystals and Their Effect on Material Properties (Cambridge University Press, Cambridge, 1998)

    MATH  Google Scholar 

  • L. Le Joncour, B. Panicaud, A. Baczmański, M. François, C. Braham, A. Paradowska, S. Wroński, R. Chiron, Duplex steel studied at large deformation until damage at mesoscopic and macroscopic scales. Mech. Mater. 42, 1048–1058 (2010)

    Article  Google Scholar 

  • L. Le Joncour, Analyses expérimentales et modélisation multi-échelles de l’endommagement d’un acier UR45N laminé vieilli, Ph.D. thesis, Université de Technologie de Troyes, 2011

    Google Scholar 

  • J. Lemaitre, J.-L. Chaboche, Mécanique Des Matériaux Solides (Cambridge University Press, Cambridge, 2001)

    Google Scholar 

  • P. Lestriez, Modélisation numérique du couplage thermo-mécanique endommagement en transformations finies. Application à la mise en forme, Ph.D. thesis, Université de Technologie de Troyes, 2003

    Google Scholar 

  • P. Lipinski, M. Berveiller Int. J. Plasticity, 5, 149–172 (1989)

    Article  MATH  Google Scholar 

  • F. Louchet, Plasticité des métaux de structure cubique centrée. Dislocations et déformation plastique (1979)

    Google Scholar 

  • S. Mahajan, Interrelationship between slip and twinning in bcc crystals. Acta Metall. 23, 671–684 (1975)

    Article  Google Scholar 

  • E. Maire, C. Bordreuil, J.-C. Boyer, L. Babouta, Damage initiation and growth in metals. Comparison between modeling and tomography experiments. J. Mech. Phys. Solids 53, 2411–2434 (2005)

    Article  MATH  Google Scholar 

  • J.-F. Mariage, Simulation numérique de l'endommagement ductile en formage de pièces massives, Ph.D. thesis, Université de Technologie de Troyes, 2003.

    Google Scholar 

  • A. Mateo, L. Lianes, M. Anglade, A. Redjaimia, G. Metauer, Characterization of the intermetallic G-phase in an AISI 329 duplex stainless steel. J. Mater. Sci. 32(12), 4533–4540 (1997)

    Article  Google Scholar 

  • L. Mcirdi, Comportement et endommagement sous sollicitation mécanique d'un acier austéno-ferritique moulé vieilli, Ph.D. thesis, Ecole Nationale Supérieur des Arts et Métier de Paris, 2000

    Google Scholar 

  • C. Miehe, J. Schotte, Anisotropic finite elastoplastic analysis of shells: Simulation of earing in deep-drawing of single- and polycrystalline sheets by Taylor-type micro-to-macro transitions. Comput. Meth. Appl. Mech. Eng. 193(1–2), 25–57 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • F. Montheillet, F. Moussy, Physique et Mécanique de L’endommagement (les Ed. De Physique, Les Ulis, 1988)

    Google Scholar 

  • T. Mura, Micromechanics of Defects in Solids (Martinus Nijhoff Publishers, Dordrecht, 1987)

    Book  Google Scholar 

  • R.J. Nedoushan, M. Farzin, M. Mashayekh, D. Banabic, A microstructure-based constitutive model for superplastic forming. Metal. Mater. Trans. A 43, 4266–4280 (2012)

    Article  Google Scholar 

  • C.J. Neil, J.A. Wollmershauser, B. Clausen, C.N. Tomé, R. Agnew, Modeling lattice strain evolution at finite strains and experimental verification for copper and stainless steel using in situ neutron diffraction. Int. J. Plasticity 26(12), 1772–1791 (2010)

    Article  MATH  Google Scholar 

  • S. Nemat-Nasser, M. Hori, Micromechanics: Overall Properties of Heterogeneous Materials (Elsevier, Amsterdam, 1993)

    MATH  Google Scholar 

  • S. Nemat-Nasser, Plasticity. A Treatise on Finite Deformation of Heterogeneous Inelastic Materials (Cambridge University Press, Cambridge, 2004)

    MATH  Google Scholar 

  • B. Panicaud, E. Rouhaud, A frame-indifferent model for a thermo-elastic material beyond the three-dimensional eulerian and lagrangian descriptions, Cont. Mech. Thermodyn. (2013, in press)

    Google Scholar 

  • A. Paquin, S. Berbenni, V. Favier, X. Lemoine, M. Berveiller, Micromechanical modeling of the elastic-viscoplastic behavior of polycrystalline steels. Int. J. Plasticity 17, 1267–1302 (2001)

    Article  MATH  Google Scholar 

  • V.K. Pecharsky, P.Y. Zavalij, Fundamentals of Powder Diffraction and Structural Characterization of Materials (Springer, New York, 2005)

    Google Scholar 

  • P. Pilvin, The contribution of micromechanical approaches to the modeling of inelastic behavior of polycrystals. Soc. Fr. Métall. Matér. 1, 31–45 (1994)

    Google Scholar 

  • D. Raabe, Computational Material Science: The Simulation of Materials Microstructures and Properties (Wiley-VCH, Weinheim, 1998)

    Book  Google Scholar 

  • D. Raabe, F. Roters, Using texture components in crystal plasticity finite element simulations. Int. J. Plasticity 20(3), 339–361 (2004)

    Article  MATH  Google Scholar 

  • E. Rouhaud, B. Panicaud, R. Kerner, Canonical frame-indifferent transport operators with the four-dimensional formalism of differential geometry, Comput. Mater. Sci. (2013, in press)

    Google Scholar 

  • K. Saanouni, Damage Mechanics in Metal Forming. Advanced Modeling and Numerical Simulation (ISTE John Wiley, London, 2012). ISBN 978-1-8482-1348-7

    Book  Google Scholar 

  • J. R. Santisteban, L. Edwards, A. Steuwer, P. J. Withers, Time-of-flight neutron transmission diffraction, J. Appl. Crystallogr. (2001). ISSN 0021-8898. http://www.isis.stfc.ac.uk/instruments/engin-x/documents/engin-x-a-third-generation-neutron-strain-scanner10390.pdf

  • E. Schmid, W. Boas, Plasticity of Crystals (Chapman and Hall, London, 1968)

    Google Scholar 

  • C.M. Sellard, Modeling microsctructural development during hot rolling. Mater. Sci. Technol. 6, 1072–1081 (1990)

    Article  Google Scholar 

  • H.R. Shercliff, A.M. Lovatt, Modeling of microstructure evolution in hot deformation. Philos. Trans. R. Soc. Lond. 357, 1621–1643 (1999)

    Article  Google Scholar 

  • C. Teodosiu, F. Sidoro, Theory of finite elastoviscoplasticity of single crystals. Int. J. Eng. Sci. 14, 165–176 (1976)

    Article  MATH  Google Scholar 

  • C. Truesdell, W. Noll, The Non-Linear Field Theories of Mechanics, 3rd edn. (Springer, New York, 2003)

    Google Scholar 

  • V. Vitek, The core structure of 1/2[1 1 1] screw dislocations in bcc crystals. Philos. Mag. 21, 1049–1073 (1970)

    Article  Google Scholar 

  • D.S. Wilkinson, X. Duan, J. Kang, M. Jain, J.D. Embury, Modeling the role of microstructure on shear instability with reference to the formability of aluminum alloys, Mater. Sci. Forum 519/521, 183–190 (2006)

    Google Scholar 

  • S. Wroński, A. Baczmański, R. Dakhlaoui, C. Braham, K. Wierzbanowski, E.C. Oliver, Determination of stress field in textured duplex steel using TOF neutron diffraction method. Acta Mater. 55, 6219–6233 (2007)

    Article  Google Scholar 

  • W. Yang, W.B. Lee, Mesoplasticity and Its Applications (Springer, Berlin, 1993)

    Book  Google Scholar 

  • Zebulon, Zset/Zebulon: Developer Manual (2008)

    Google Scholar 

  • Q. Zhu, C.M. Sellars, Microstructural evolution of Al-Mg alloys during thermomechanical processing. Mater. Sci. Forum 331(1), 409–420 (2000)

    Article  Google Scholar 

Download references

Acknowledgments

Authors would like to thank gratefully the different people that are indirectly participants of this work through their collaboration to the theoretical, numerical, and experimental aspects: Manuel François, Arjen Roos, Andrzej Baczmanski, and Chedly Braham. We would also thank Emmanuelle Rouhaud for the time that she generously spent to correct this entire chapter. All these collaborations have allowed progressing on this particular domain and making the present authors as efficient as possible.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benoit Panicaud .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this entry

Cite this entry

Panicaud, B., Le Joncour, L., Hfaiedh, N., Saanouni, K. (2015). Micromechanical Polycrystalline Damage-Plasticity Modeling for Metal Forming Processes. In: Voyiadjis, G. (eds) Handbook of Damage Mechanics. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5589-9_40

Download citation

Publish with us

Policies and ethics