Skip to main content

Ductile Damage in Metal Forming: Advanced Macroscopic Modeling and Numerical Simulation

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

  • First Online:
Book cover Handbook of Damage Mechanics
  • 5176 Accesses

Abstract

This chapter is dedicated to the presentation of an advanced fully adaptive numerical methodology for virtual sheet and/or bulk metal forming simulation to predict any defects occurrence. First, the detailed formulation of thermodynamically consistent fully coupled, nonlocal constitutive equations is given. Formulated in the framework of the generalized micromorphic continua, the proposed nonlocal constitutive equations account for the main material nonlinearities as the isotropic and kinematic hardening, the thermal exchanges, and the isotropic ductile damage under large inelastic strains. Second, the related numerical aspects required to solve the initial and boundary value problem (IBVP) are presented in the framework of a fully adaptive finite element method. First, the strong and weak forms for the multifunctional IBVP are posed. The well-known static implicit (SI) and dynamic explicit (DE) global resolution schemes are summarized, followed by the detailed presentation of the local integration scheme of the fully coupled constitutive equations. The numerical treatment of the contact and friction is reviewed in the framework of master/slave surfaces method. Finally, some typical examples of sheet and bulk metal forming processes are numerically simulated using the proposed fully adaptive methodology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 649.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • R. Arrieux, Determination and use of the forming limit stress diagrams in sheet metal forming. J. Mater. Process. Technol. 53, 47–56 (1995)

    Google Scholar 

  • R. Arrieux, M. Boivin, Determination of the forming limit stress curve for anisotropic sheets. CIRP Ann. Manuf. Technol. 16(1), 195–198 (1987)

    Google Scholar 

  • R. Arrieux, C. Bedrin, M. Boivin, Determination of an intrinsic forming limit stress diagram for isotropic metal sheets, in Proceedings of 12th IDDRG, (1982), pp. 61–71

    Google Scholar 

  • R. Asaro, V. Lubards, Mechanics of Solids and Materials (Cambridge University Press, Cambridge, 2006)

    Google Scholar 

  • A. Assempour, R. Hashemi, K. Abrinia, M. Ganjiani, E. Masoumi, A methodology for prediction of forming limit stress diagrams considering the strain path effect. Comput. Mater. Sci. 45, 195–204 (2009)

    Google Scholar 

  • H. Badreddine, K. Saanouni, A. Dogui, A. Gahbich, ElastoplasticitĂ© anisotrope non normale en grandes dĂ©formations avec Endommagement. Application Ă  la mise en forme de tĂ´les minces. Revue EuropĂ©enne de MĂ©canique numĂ©rique 16(6–7), 913–940 (2007)

    MATH  Google Scholar 

  • H. Badreddine, K. Saanouni, A. Dogui, On non-associative anisotropic finite plasticity fully coupled with isotropic ductile damage for metal forming. Int. J. Plast. 26, 1541–1575 (2010)

    MATH  Google Scholar 

  • K.J. Bathe, Finite Element Procedures (Prentice Hall, Upper Saddle River, 1996)

    Google Scholar 

  • T. Belytschko, W.K. Liu, B. Moran, Nonlinear Finite Elements for Continua and Structures (Wiley, NewYork, 2000)

    MATH  Google Scholar 

  • J. Besson, G. Cailletaud, J.L. Chaboche, S. Forest, MĂ©canique Non-linĂ©aire des MatĂ©riaux (Hermes, Paris, 2001)

    MATH  Google Scholar 

  • J. Bonnet, R.D. Wood, Nonlinear Continuum Mechanics for Finite Element Analysis (Cambridge University Press, Cambridge, 1997)

    Google Scholar 

  • N. Bontcheva, R. Iankov, Numerical investigation of the damage process in metal forming. Eng. Frac. Mech. 40, 387–393 (1991)

    Google Scholar 

  • M. Bornert, T. Brethau, P. Gilormini (eds.), HomogĂ©nĂ©isation en mĂ©canique des matĂ©riaux, vol. 1 et 2 (Hermès, Paris, 2001)

    Google Scholar 

  • M. Boudifa, K. Saanouni, J.L. Chaboche, A micromechanical model for inelastic ductile damage prediction in polycrystalline metals. Int. J. Mech. Sci. 51, 453–464 (2009)

    Google Scholar 

  • J.D. Bressan, J.A. Williams, The use of a shear instability criterion to predict local necking in sheet metal deformation. Int. J. Mech. Sci. 25, 155–168 (1983)

    MATH  Google Scholar 

  • M. Brunet, F. Morestin, Experimental and analytical necking studies of anisotropic sheet metals. J. Mater. Process. Technol. 112, 214–226 (2001)

    Google Scholar 

  • M. Brunet, F. Sabourin, S. Mguil-Touchal, The prediction of necking and failure in 3D sheet forming analysis using damage variable. J. Geophys. Res. 6, 473–482 (1996)

    Google Scholar 

  • M. Brunet, F. Morestin, H. Walter-Leberre, Failure analysis of anisotropic sheet-metals using a nonlocal plastic damage model. J. Mater. Process. Technol. 170(1-2), 457–470 (2005)

    Google Scholar 

  • H.J. Bunge, Texture Analysis in Materials Science – Mathematical Methods (Butterworths, London, 1982)

    Google Scholar 

  • J. Carbonnière, S. Thuillier, F. Sabourin, M. Brunet, P.Y. Manach, Comparison of the work hardening of metallic sheets in bending-unbending and simple shear. Int. J. Mech. Sci. 51, 122–130 (2009)

    Google Scholar 

  • J.M.A. Cesar de Sa, P.M.A. Areias, C. Zheng, Damage modelling in metal forming problems using an implicit non-local gradient model. Comput. Methods Appl. Mech. Eng. 195, 6646–6660 (2006)

    MATH  Google Scholar 

  • J.L. Chaboche, M. Boudifa, K. Saanouni, A CDM approach of ductile damage with plastic incompressibility. Int. J. Frac. 137, 51–75 (2006)

    MATH  Google Scholar 

  • A. Cherouat, K. Saanouni, Numerical simulation of sheet metal blanking process using a coupled finite elastoplastic damage modelling. Int. J. Form. Process 6(1), 7–32 (2003)

    Google Scholar 

  • A. Cherouat, K. Saanouni, Y. Hammi, Improvement of forging process of a 3D complex part with respect to damage occurrence. J Mater. Process. Technol. 142(2), 307–317 (2002a)

    Google Scholar 

  • A. Cherouat, K. Saanouni, Y. Hammi, Numerical improvement of thin tubes hydroforming with respect to ductile damage. Int. J. Mech. Sci. 44, 2427–2446 (2002b)

    MATH  Google Scholar 

  • W.Y. Chien, J. Pan, S.C. Tang, A combined necking and shear localization analysis for aluminum sheets under biaxial stretching conditions. Int. J. Plast. 20, 1953–1981 (2004)

    MATH  Google Scholar 

  • C.C. Chu, An analysis of localized necking in punch stretching. Int. J. Solids Struct. 16, 913–921 (1980)

    MATH  Google Scholar 

  • C.C. Chu, A. Needleman, Voids nucleation effects in biaxially stretched sheets. J. Eng. Mater. Technol. 102, 249–256 (1980)

    Google Scholar 

  • J.P. Cordebois, P. Ladevèze, Necking criterion applied in sheet metal forming, in Plastic Behaviour of Anisotropic Solids, ed. by J.P. Boehler (Editions CNRS, 1985)

    Google Scholar 

  • E. Cosserat, F. Cosserat, Notes sur la thĂ©orie des corps dĂ©formables, in TraitĂ© de Physique, t.2, ed. by O.D. Chwolson (Hermann Librairie Scientifique, Paris, 1909), pp. 953–1173

    Google Scholar 

  • E. Cosserat, F. Cosserat, ThĂ©orie des Corps DĂ©formables (Hermann Editeurs, Paris, 2009). ISBN 978 27056 6920 1

    Google Scholar 

  • M.A. Crisfield, Nonlinear Finite Element Analysis of Solids and Structures. Essentials, vol. 1 (Wiley, Chichester, 1991)

    MATH  Google Scholar 

  • M.A. Crisfield, Nonlinear Finite Element Analysis of Solids and Structures. Advanced topics, vol. 2 (Wiley, Chichester, 1997)

    Google Scholar 

  • R. Dautray, J.J. Lions, Analyse mathĂ©matique et calcul numĂ©rique pour les sciences et les techniques: tomes 1, 2 et 3 (Dunaud, Paris, 1984)

    Google Scholar 

  • N.E.A. De Souza, D. Peric, D.R.J. Owen, Computational Methods for Plasticity: Theory and Applications (Wiley, Chichester, 2008)

    Google Scholar 

  • P.M. Dixit, U.S. Dixit, Modeling of Metal Forming and Machining Processes by Finite Element and Soft Computing Methods (Springer, London, 2008)

    Google Scholar 

  • R. Engelen, M.G.D. Geers, F. Baaijens, Nonlocal implicit gradient-enhanced elasto-plasticity for the modelling of softening behaviour. Int. J. Plast. 19, 403–433 (2003)

    MATH  Google Scholar 

  • A.C. Eringen, Microcontinuum Field Theories: Foundation and Solids (Springer, New York, 1999)

    Google Scholar 

  • A.C. Eringen, Nonlocal Continuum Field Theories (Springer, New York, 2002)

    MATH  Google Scholar 

  • S. Forest, Milieux Continus GĂ©nĂ©ralisĂ©s et Milieux HĂ©tĂ©rogènes (Presses de l’Ecole des Mines, Paris, 2006)

    Google Scholar 

  • S. Forest, Micromorphic approach for gradient elasticity, viscoplasticity and damage. ASCE J. Eng. Mech. 135(3), 117–131 (2009)

    Google Scholar 

  • S. Forest, E.C. Aifantis, Some links between recent gradient thermo-elasto-plasticity theories and the thermomechanics of generalized continua. Int. J. Solids Struct. 47, 3367–3376 (2010)

    MATH  Google Scholar 

  • S. Forest, R. Sievert, Elastoviscoplastic constitutive frameworks for generalized continua. Acta Mech. 160, 71–111 (2003)

    MATH  Google Scholar 

  • W. Gambin, Plasticity and Textures (Kluwer Academic, Dordrecht, 2001)

    Google Scholar 

  • M.G.D. Geers, Finite strain logarithmic hyperelasto-plasticity with softening: a strongly non-local implicit gradient framework. Comput. Methods. Appl. Mech. Eng. 193, 3377–3401 (2004)

    MATH  Google Scholar 

  • M.G.D. Geers, R. Ubachs, R. Engelen, Strongly non-local gradient-enhanced finite strain elastoplasticity. Int. J. Numer. Methods Eng. 56, 2039–2068 (2003)

    MATH  Google Scholar 

  • J.C. Gelin, Finite element analysis of ductile fracture and defects formations in cold and hot forging. Ann. CIRP 39, 215–218 (1990)

    Google Scholar 

  • J.C. Gelin, J. Oudin, Y. Ravalard, An imposed finite element method for the analysis of damage and ductile fracture in cold metal forming processes. Ann. CIRP 34(1), 209–213 (1985)

    Google Scholar 

  • P. Germain, Cours de mĂ©canique des milieux continus (Masson, Paris, 1973)

    MATH  Google Scholar 

  • A.K. Ghosh, J.V. Laukonis, The influence of the strain path changes on the formability of sheet steel, in 9th Congress of IDDRG (ASM Publication, 1976)

    Google Scholar 

  • Y. Ghozzi, C. Labergère, K. Saanouni, Modelling and numerical simulation of thick sheets slitting using continuum damage mechanics. in 1st International Conference on Damage Mechanics (ICDM’2012), Belgrade, June 2012, pp. 25–27

    Google Scholar 

  • A.F. Graf, W.F. Hosford, Calculations of forming limit diagrams for changing strain paths. Met. Trans. A 24, 2497–2501 (1993)

    Google Scholar 

  • M. Hamed, Formulations micromorphiques en Ă©lastoplasticitĂ© non-locale avec endommagement en transformations finies, Ph.D., University of Technology of Troyes, 2012

    Google Scholar 

  • P. Hartley, S.E. Clift, J. Salimi, C.E.N. Sturgess, I. Pillinger, The prediction of ductile fracture initiation in metal forming using a finite element method and various fracture criteria. Res. Mech. 28, 269–293 (1989)

    Google Scholar 

  • K.S. Havner, Finite Plastic Deformation of Crystalline Solids (Cambridge University Press, Cambridge, 1992)

    MATH  Google Scholar 

  • E. Hinton, Introduction to Nonlinear Finite Element Analysis (NAFEMS, Glasgow, 1992)

    Google Scholar 

  • Hora P., Tong L., 2009, Prediction of failure under complex 3D-stress conditions, in Proceedings of Forming Technology Forum 2009, IVP, ETH Zurich, 5–6 May 2009, pp. 133–138

    Google Scholar 

  • T.J.R. Hughes, The Finite Element Method. Linear Static and Dynamic Finite Element Analysis (Dover Publications, Mineola, 1987)

    MATH  Google Scholar 

  • T.J.R. Hughes, J. Winget, Finite rotation effects in numerical integration of rate-constitutive equations arising in large-deformation analysis. Int. J. Numer. Methods Eng. 15, 1862–1867 (1980)

    MathSciNet  MATH  Google Scholar 

  • A. Ibrahimbegovic, MĂ©canique non linĂ©aire des solides dĂ©formables (Hermes, Paris, 2006)

    MATH  Google Scholar 

  • M. Issa, K. Saanouni, C. Labergère, A. Rassineux, Prediction of serrated chip formation in orthogonal metal cutting by advanced adaptive 2D numerical methodology. Int. J. Mach. Machinab. Mater. 9(3/4), 295–315 (2011)

    Google Scholar 

  • M. Issa, C. Labergère, K. Saanouni, A. Rassineux, Numerical prediction of thermomechanical fields localization in orthogonal cutting. CIRP J. Manuf. Sci. Technol. 5, 175–195 (2012)

    Google Scholar 

  • S. Kobayashi, S.I. Oh, T. Altan, Metal Forming and the Finite Element Method (Oxford University Press, Oxford, 1989)

    Google Scholar 

  • U.F. Kocks, C.N. TomĂ©, H.R. Wenk, Texture and Anisotropy: Preferred Orientations in Polycrystals and Their Effect on Material Properties (Cambridge University Press, Cambridge, 1998)

    MATH  Google Scholar 

  • C. Labergère, A. Rassineux, K. Saanouni, 2D adaptive mesh methodology for the simulation of metal forming processes with damage. Int. J. Mater. Form. 4(3), 317–328 (2011)

    Google Scholar 

  • P. Ladevèze, Non Linear Computational Structural Mechanics (Springer, New York, 1998)

    Google Scholar 

  • T.A. Laursen, Computational Contact and Impact Mechanics: Fundamentals of Modelling Interfacial Phenomena in Nonlinear Finite Element Analysis (Springer, Berlin, 2002)

    Google Scholar 

  • N. Le MaoĂ»t, S. Thuillier, P.Y. Manach, Aluminium alloy damage evolution for different strain paths- application to hemming process. Eng. Frac. Mech. 76, 1202–1214 (2009)

    Google Scholar 

  • H. Lee, K.E. Peng, J. Wang, An anisotropic damage criterion for deformation instability and its application to forming limit analysis of metal plates. Eng. Frac. Mech. 21(5), 1031–1054 (1985)

    Google Scholar 

  • J. Lemaitre, J.L. Chaboche, A. Benallal, R. Desmorat, MĂ©canique des matĂ©riaux solides, 3rd edn. (Dunod, Paris, 2009)

    Google Scholar 

  • P. Lestriez, K. Saanouni, J.F. Mariage, A. Cherouat, Numerical prediction of damage in metal forming process including thermal effects. Int. J. Damage Mech. 13(1), 59–80 (2004)

    Google Scholar 

  • P. Lestriez, K. Saanouni, A. Cherouat, Simulation numĂ©rique de la coupe orthogonale par couplage thermique-comportement-endommagement en transformations finies. MĂ©canique Indust. 6, 297–307 (2005)

    Google Scholar 

  • J.F. Mariage, K. Saanouni, P. Lestriez, A. Cherouat, Numerical simulation of an hexnut forming process including damage effect. Int. J. Form. Process. 8(2), 291–310 (2005)

    Google Scholar 

  • Z. Mariciniack, K. Kunczynski, Limit strain in the processes of stretch forming sheet steel. J. Mech. Phys. Solids 1, 609–620 (1967)

    Google Scholar 

  • Z. Mariciniack, K. Kunczynski, T. Pokora, Influence of plastic properties of a material on the forming limit diagram for sheet metal in tension. Int. J. Mech. Sci. 15, 789–803 (1973)

    Google Scholar 

  • K. Mathur, P. Dawson, Damage evolution modelling in bulk forming processes, in Computational Methods for Predicting Material Processing Defects, ed. by M. Predeleanu (Elsevier, 1987)

    Google Scholar 

  • P.H. Matin, L.M. Smith, S. Petrusevski, A method for stress space forming limit diagram construction for aluminium alloys. J. Mat. Proc. Techn. 174, 258–265 (2006)

    Google Scholar 

  • T. Mura, Micromechanics of Defects in Solids (Martinus Nijhoff Publishers, Dordrecht, 1987)

    Google Scholar 

  • A. Needleman, N. Triantafyllidis, Void growth and local necking in biaxially stretched sheets. J. Eng. Mater. Technol. 100, 164–172 (1980)

    Google Scholar 

  • S. Nemat-Nasser, Plasticity. A Treatise on Finite Deformation of Heterogeneous Inelastic Materials (Cambridge University Press, Cambridge, 2004)

    MATH  Google Scholar 

  • S. Nemat-Nasser, M. Hori, Micromechanics: Overall Properties of Heterogeneous Materials (Elsevier, Amsterdam, 1993)

    MATH  Google Scholar 

  • T.D. Nguyen, Anisotropie de l’endommagement et simulations numĂ©riques en mise en forme par grandes dĂ©formations plastiques, Ph.D., University of Technology of Troyes, 2012

    Google Scholar 

  • J.T. Oden, Finite Elements of Nonlinear Continua (McGraw-Hill, New York, 1972)

    MATH  Google Scholar 

  • E. Onate, M. Kleiber, Plastic and viscoplastic flow of void containing metal – applications to axisymmetric sheet forming problem. Int. J. Numer. Methods Eng. 25, 237–251 (1988)

    Google Scholar 

  • D.R.J. Owen, E. Hinton, Finite Elements in Plasticity: Theories and Practice (Pineridge Press, Swansea, 1980)

    Google Scholar 

  • P. Picart, O. Ghouati, J.C. Gelin, Optimization of metal forming process parameters with damage minimization. J. Mater. Process. Technol. 80–81, 597–601 (1998)

    Google Scholar 

  • D. Raabe, Computational Material Science: The Simulation of Materials Microstructures and Properties (Wiley-VCH, Weinheim, 1998)

    Google Scholar 

  • J.N. Reddy, An Introduction to Nonlinear Finite Element Analysis (Oxford University Press, Oxford, 2004)

    MATH  Google Scholar 

  • G.H. Rowe, C.E.N. Sturguess, P. Hartley, I. Pillinger, Finite Element Plasticity and Metal Forming Analysis (Cambridge University Press, Cambridge, 1991)

    Google Scholar 

  • K. Saanouni, Virtual metal forming including the ductile damage occurrence, actual state of the art and main perspectives. J. Mater. Process. Technol. 177, 19–25 (2006)

    Google Scholar 

  • K. Saanouni, On the numerical prediction of the ductile fracture in metal forming. Eng. Frac. Mech. 75, 3545–3559 (2008)

    Google Scholar 

  • K. Saanouni, Damage Mechanics in Metal Forming. Advanced Modeling and Numerical Simulation (ISTE John Wiley, London, 2012a). ISBN 978-1-8482-1348-7

    Google Scholar 

  • K. Saanouni, ModĂ©lisation et simulation numĂ©riques en formage Virtuel (Hermes, Paris, 2012b). ISBN 978-2-7462-3225-9

    Google Scholar 

  • K. Saanouni, M. Hamed, Micromorphic approach of finite gradient-elastoplasticity fully coupled with ductile damage. Formulation and computational approaches. Int. J Solids Struct. 50, 2289–2309 (2013)

    Google Scholar 

  • K. Saanouni, P. Lestriez, Modelling and numerical simulation of ductile damage in bulk metal forming. Steel Res. Int. 80(9), 645–657 (2009)

    Google Scholar 

  • K. Saanouni, C. Forster, F. Benhatira, On the anelastic flow with damage. Int. J. Damage Mech. 3(2), 140–169 (1994)

    Google Scholar 

  • K. Saanouni, K. Nesnas, Y. Hammi, Damage modelling in metal forming processes. Int. J. Damage Mech. 9, 196–240 (2000)

    Google Scholar 

  • K. Saanouni, A. Cherouat, Y. Hammi, Numerical aspects of finite elastoplasticity with isotropic ductile damage for metal forming. Revue EuropĂ©enne des E. F 10(2-3-4), 327–351 (2001)

    MATH  Google Scholar 

  • K. Saanouni, J.L. Chaboche, Computational damage mechanics. Application to metal forming’, chapter 3.06, in Comprehensive Structural Integrity, ed. by I. Milne, R.O. Ritchie, B. Karihaloo. Numerical and Computational Methods (editors: R. de Borst, H. A. Mang), vol. 3 (Elsevier Ltd, Oxford, 2003), pp. 321–376. ISBN: 0-08-043749-4

    Google Scholar 

  • K. Saanouni, J.F. Mariage, A. Cherouat, P. Lestriez, 2004, Numerical prediction of discontinuous central bursting in axisymmetric forward extrusion by continuum damage mechanics. Comput. Struct. 82, 2309–2332 (2004)

    Google Scholar 

  • K. Saanouni, H. Badreddine, M. Ajmal, Advances in virtual metal forming including the ductile damage occurrence, application to 3D sheet metal deep drawing. J. Eng. Mater. Technol. 130, 021022-1–021022-1 (2008)

    Google Scholar 

  • K. Saanouni, N. Belamri, P. Autesserre, Finite element simulation of 3D sheet metal guillotining using advanced fully coupled elasto-plastic damage constitutive equations. J. Finite Elem Anal. Des 46, 535–550 (2010)

    Google Scholar 

  • K. Saanouni, P. Lestriez, C. Labergère, 2D adaptive simulations in finite thermo-elasto-viscoplasticity with ductile damage : application to orthogonal metal cutting by chip formation and breaking. Int. J. Damage Mech. 20(1), 23–61 (2011)

    Google Scholar 

  • E. Schmid, W. Boas, Plasticity of Cristals (Chapman and Hall, London, 1968)

    Google Scholar 

  • F. Sidoroff, A. Dogui, Some issues about anisotropic elastic–plastic models at finite strain. Int. J. Solids Struct. 38, 9569–9578 (2001)

    MATH  Google Scholar 

  • J.C. Simo, T.J.R. Hughes, Computational Inelasticity (Springer, New York, 1997)

    Google Scholar 

  • D. Sornin, K. Saanouni, About elastoplastic non-local formulations with damage gradients. Int. J. Damage Mech. 20(6), 845–875 (2011)

    Google Scholar 

  • C. Soyarslan, A.E. Tekkaya, U. AkyĂĽz, Application of continuum damage mechanics in crack propagation problems: forward extrusion chevron predictions. Z. Angew. Math. Mech. 88(6), 436–453 (2008)

    MathSciNet  MATH  Google Scholar 

  • S. Storen, J.R. Rice, Localized necking in sheets. J. Mech. Phys. Solids 23, 421–441 (1975)

    Google Scholar 

  • T. Stoughton, Stress-based forming limits in sheet metal forming. J. Eng. Mater. Technol. 123, 417–422 (2001)

    Google Scholar 

  • W. Swift, Plastic instability under plane stress. J. Mech. Phys. Solids 1, 1–18 (1952)

    Google Scholar 

  • C. Truesdell, W. Noll, The Nonlinear Filed Theories of Mechanics, 1st edn. (Springer, New York, 1965)

    Google Scholar 

  • C. Truesdell, W. Noll, The Nonlinear Filed Theories of Mechanics, 3rd edn. (Springer, New York, 2004)

    Google Scholar 

  • P. Villon, H. Borouchaki, K. Saanouni, Transfert de champs plastiquement admissibles. CRAS, MĂ©canique 330, 313–318 (2002)

    MATH  Google Scholar 

  • R.H. Wagoner, J.L. Chenot, Metal Forming Analysis (Cambridge University Press, Cambridge, 2001)

    Google Scholar 

  • K. Walker, A. Freed, Asymptotic Integration Algorithm for Nonhomogeneous, Nonlinear First Order ODEs (Engineering Science Software, NASA Technical Memorendum, 1991)

    Google Scholar 

  • P. Wriggers, Computational Contact Mechanics (Wiley, Hoboken, 2002)

    Google Scholar 

  • P. Wriggers, Nonlinear Finite Element Methods (Springer, Berlin, 2008)

    MATH  Google Scholar 

  • W. Yang, W.B. Lee, Mesoplasticity and Its Applications (Springer, Berlin, 1993)

    Google Scholar 

  • K. Yoshida, T. Kuwabara, Effect of strain hardening, behaviour on forming limit stresses of steel tube subjected to nonproportional loading paths. Int. J. Plast. 23, 1260–1284 (2007)

    MATH  Google Scholar 

  • M. Yoshida, F. Yoshida, H. Konishi, K. Fukumoto, Fracture limits of sheet metals under stretch bending. Int. J. Mech. Sci. 47, 1885–1896 (2005)

    MATH  Google Scholar 

  • Z.H. Zhong, Finite Element Procedures for Contact-Impact Problems (Oxford University Press, Oxford, 1993)

    Google Scholar 

  • Y.Y. Zhu, S. Cescotto, The finite element prediction of ductile fracture initiation in dynamic metal forming processes. J. Phys. III 1, 751–757 (1991)

    Google Scholar 

  • Y.Y. Zhu, S. Cescotto, A fully coupled elasto-visco-plastic damage theory for anisotropic materials. Int. J. Solids Struct. 32(11), 1607–1641 (1995)

    MATH  Google Scholar 

  • Y.Y. Zhu, S. Cescotto, A.M. Habraken, A fully coupled elastoplastic damage modelling and fracture criteria in metal forming processes. J. Mater. Process. Technol. 32, 197–204 (1992)

    Google Scholar 

  • O.C. Zienkiewicz, R.L. Taylor, The Finite Element Method for Solids and Structural Mechanics, 1st edn. (Elsevier, Burlington, 1967) (6th edition in 2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khemais Saanouni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this entry

Cite this entry

Saanouni, K., Hamed, M., Labergère, C., Badreddine, H. (2015). Ductile Damage in Metal Forming: Advanced Macroscopic Modeling and Numerical Simulation. In: Voyiadjis, G. (eds) Handbook of Damage Mechanics. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5589-9_37

Download citation

Publish with us

Policies and ethics