Skip to main content

Two-Dimensional Discrete Damage Models: Lattice and Rational Models

  • Reference work entry
  • First Online:
Handbook of Damage Mechanics

Abstract

Many materials exhibit a discontinuous and inhomogeneous nature on various spatial scales that can lead to complex mechanical behaviors difficult to reproduce with continuum-based models. “Among these complex phenomena is damage evolution with nucleation, propagation, interaction, and coalescence of cracks that can result in a plethora of macroscale deformation forms.” Discontinua-based models are computational methods that represent material as an assemblage of distinct elements interacting with one another. The mesoscale methods of computational mechanics of discontinua presented in this our two essays can be, arguably, divided into three broad and intervening categories: spring network (lattice) models, discrete/distinct-element methods (DEM), and particle models. The distinct-element computational methods such as molecular dynamics and smoothed-particle hydrodynamics are outside the scope of the present overview. The objective of this chapter is to briefly survey the spring network models and their main applications. The discrete-based models have been extensively applied in the last decade to three-dimensional configurations. However, since the scope of this article is limited to two-dimensional (2D) models for practical purposes, these important advances are ignored. Likewise, one-dimensional (1D) fiber bundle models are also excluded from this account.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 649.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • J. Alibert, P. Seppecher, F. Dell’Isola, Truss modular beams with deformation energy depending on higher displacement gradients. Math. Mech. Sol. 8, 51–73 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  • A. Arslan, R. Ince, B.L. Karihaloo, Improved lattice model for concrete fracture. J. Eng. Mech. 128(1), 57–65 (2002)

    Article  Google Scholar 

  • Z.P. Bažant, B.H. Oh, Crack band theory for fracture of concrete. Mater. Struct. (RILEM) 16(93), 155–177 (1983)

    Google Scholar 

  • Z.P. Bažant, M.R. Tabbara, M.T. Kazemi, G. Pyaudier-Cabot, Random particle model for fracture of aggregate and fiber composites. J. Eng. Mech. 116(8), 1686–1705 (1990)

    Article  Google Scholar 

  • J.E. Bolander Jr., S. Saito, Fracture analyses using spring networks with random geometry. Eng. Fract. Mech. 61, 569–591 (1998)

    Article  Google Scholar 

  • J.E. Bolander, N. Sukumar, Irregular lattice model for quasistatic crack propagation. Phys. Rev. B 71, 094106 (2005)

    Article  Google Scholar 

  • J.E. Bolander Jr., G.S. Hong, K. Yoshitake, Structural concrete analysis using rigid-body-spring networks. Comput. Aided Civ. Infrast. Eng. 15, 120 (2000)

    Article  Google Scholar 

  • G. Cusatis, Z.P. Bažant, L. Cedolin, Confinement-shear lattice model for concrete damage in tension and compression I. Theory. J. Eng. Mech. 129(12), 1439–1448 (2003)

    Article  Google Scholar 

  • G. Cusatis, Z.P. Bazant, L. Cedolin, Confinement-shear lattice CSL model for fracture propagation in concrete. Comput. Methods Appl. Mech. Eng. 195, 7154–7171 (2006)

    Article  MATH  Google Scholar 

  • M. Grah, K. Alzebdeh, P.Y. Sheng, M.D. Vaudin, K.J. Bowman, M. Ostoja-Starzewski, Brittle intergranular failure in 2D microstructures: experiments and computer simulations. Acta Mater. 44(10), 4003–4018 (1996)

    Article  Google Scholar 

  • P. Hou, Lattice model applied to the fracture of large strain composite. Theory Appl. Fract. Mech. 47, 233–243 (2007)

    Article  Google Scholar 

  • A. Hrennikoff, Solution of problems of elasticity by the framework method. J. Appl. Mech. 8, A619–A715 (1941)

    MathSciNet  Google Scholar 

  • A. Jagota, S.J. Bennison, Spring-network and finite element models for elasticity and fracture, in Proceedings of a Workshop on Breakdown and Non-linearity in Soft Condensed Matter, ed. by K.K. Bardhan, B.K. Chakrabarti, A. Hansen (Springer, Berlin/Heidelberg/New York, 1994), pp. 186–201

    Chapter  Google Scholar 

  • M. Jirásek, Z.P. Bažant, Microscopic fracture characteristics of random particle system. Int. J. Fract. 69, 201–228 (1995)

    Article  Google Scholar 

  • B.L. Karihaloo, P.F. Shao, Q.Z. Xiao, Lattice modelling of the failure of particle composites. Eng. Fract. Mech. 70, 2385–2406 (2003)

    Article  Google Scholar 

  • T. Kawai, New discrete models and their application to seismic response analysis of structures. Nucl. Eng. Des. 48, 207–229 (1978)

    Article  Google Scholar 

  • A.R. Khoei, M.H. Pourmatin, A dynamic lattice model for heterogeneous materials. Comput. Methods Civ. Eng. 2, 1–20 (2011)

    Google Scholar 

  • J. Kozicki, J. Tejchman, Modelling of fracture process in concrete using a novel lattice model. Granul. Matter 10, 377–388 (2008)

    Article  MATH  Google Scholar 

  • G. Lilliu, J.G.M. van Mier, 3D lattice type fracture model for concrete. Eng. Fract. Mech. 70, 927–941 (2003)

    Article  Google Scholar 

  • J.X. Liu, S.C. Deng, J. Zhang, N.G. Liang, Lattice type of fracture model for concrete. Theory Appl. Fract. Mech. 48, 269–284 (2007)

    Article  Google Scholar 

  • J.X. Liu, S.C. Deng, N.G. Liang, Comparison of the quasi-static method and the dynamic method for simulating fracture processes in concrete. Comput. Mech. 41, 647–660 (2008)

    Article  MATH  Google Scholar 

  • J.X. Liu, Z.T. Chen, K.C. Li, A 2-D lattice model for simulating the failure of paper. Theory Appl. Fract. Mech. 54, 1–10 (2010)

    Article  MATH  Google Scholar 

  • A. Misra, C.S. Chang, Effective elastic moduli of heterogeneous granular solids. Int. J. Sol. Struct. 30(18), 2547–2566 (1993)

    Article  MATH  Google Scholar 

  • M. Ostoja-Starzewski, Lattice models in micromechanics. Appl. Mech. Rev. 55(1), 35–60 (2002)

    Article  MathSciNet  Google Scholar 

  • M. Ostoja-Starzewski, Microstructural Randomness and Scaling in Mechanics of Materials (Taylor & Francis Group, Boca Raton, 2007)

    Book  Google Scholar 

  • S.L. Phoenix, I.J. Beyerlein, Statistical strength theory for fibrous composite materials, in Comprehensive Composite Materials, ed. by A. Kelly, vol. 1 (Pergamon, Oxford, 2000), pp. 559–639

    Chapter  Google Scholar 

  • A. Rinaldi, A rational model for 2D disordered lattices under uniaxial loading. Int. J. Damage Mech. 18, 233–257 (2009)

    Article  Google Scholar 

  • A. Rinaldi, Statistical model with two order parameters for ductile and soft fiber bundles in nanoscience and biomaterials. Phys. Rev. E 83(4–2), 046126 (2011a)

    Article  Google Scholar 

  • A. Rinaldi, Advances in statistical damage mechanics: new modelling strategies, in Damage Mechanics and Micromechanics of Localized Fracture Phenomena in Inelastic Solids, ed. by G. Voyiadjis. CISM Course Series, vol. 525 (Springer, Berlin/Heidelberg/New York, 2011b)

    Chapter  Google Scholar 

  • A. Rinaldi, Bottom-up modeling of damage in heterogeneous quasi-brittle solids. Continuum Mech. Thermodyn. 25(2–4), 359–373 (2013)

    Article  Google Scholar 

  • A. Rinaldi, Y.C. Lai, Damage theory of 2D disordered lattices: energetics and physical foundations of damage parameter. Int. J. Plast. 23, 1796–1825 (2007)

    Article  MATH  Google Scholar 

  • A. Rinaldi, L. Placidi, A microscale second gradient approximation of the damage parameter of quasi-brittle heterogeneous lattices. Z. Angew. Math. Mech. (ZAMM) (2013). doi:10.1002/zamm.201300028

    Google Scholar 

  • A. Rinaldi, S. Mastilovic, D. Krajcinovic, Statistical damage mechanics – 2. Constitutive relations. J. Theory Appl. Mech. 44(3), 585–602 (2006)

    Google Scholar 

  • A. Rinaldi, D. Krajcinovic, S. Mastilovic, Statistical damage mechanics and extreme value theory. Int. J. Damage Mech. 16(1), 57–76 (2007)

    Article  Google Scholar 

  • E. Schlangen, E.J. Garboczi, New method for simulating fracture using an elastically uniform random geometry lattice. Int. J. Eng. Sci. 34, 1131–1144 (1996)

    Article  MATH  Google Scholar 

  • E. Schlangen, E.J. Garboczi, Fracture simulations of concrete using lattice models: computational aspects. Eng. Fract. Mech. 57, 319–332 (1997)

    Article  Google Scholar 

  • E. Schlangen, J.G.M. Van Mier, Micromechanical analysis of fracture of concrete. Int. J. Damage Mech. 1, 435–454 (1992)

    Article  Google Scholar 

  • V. Topin, J.-Y. Delenne, F. Radjaï, L. Brendel, F. Mabille, Strength and failure of cemented granular matter. Eur. Phys. J. E 23, 413–429 (2007)

    Article  Google Scholar 

  • K. Tsubota, S. Wada, Elastic force of red blood cell membrane during tank-treading motion: consideration of the membrane’s natural state. Int. J. Mech. Sci. 52, 356–364 (2010)

    Article  Google Scholar 

  • K. Tsubota, S. Wada, T. Yamaguchi, Simulation study on effects of hematocrit on blood flow properties using particle method. J. Biomech. Sci. Eng. 1(1), 159–170 (2006)

    Article  Google Scholar 

  • J.G.M. Van Mier, Fracture Processes of Concrete (CRC Press, New York, 1997)

    Google Scholar 

  • J.G.M. Van Mier, M.B. Nooru-Mohamed, Geometrical and structural aspects of concrete fracture. Eng. Fract. Mech. 35(4/5), 617–628 (1990)

    Article  Google Scholar 

  • J.G.M. Van Mier, M.R.A. van Vliet, T.K. Wang, Fracture mechanisms in particle composites: statistical aspects in lattice type analysis. Mech. Mater. 34, 705–724 (2002)

    Article  Google Scholar 

  • R. Vidya Sagar, Size effect in tensile fracture of concrete – a study based on lattice model applied to CT-specimen, in Proceedings of the 21th International Congress of Theoretical and Applied Mechanics ICTAM04, ed. by W. Gutkowski, T.A. Kowaleski (Springer, Berlin/Heidelberg/New York, 2004), pp. 1–3

    Google Scholar 

  • H.-J. Vogel, H. Hoffmann, A. Leopold, K. Roth, Studies of crack dynamics in clay soil II. A physically based model for crack formation. Geoderma 125, 213–223 (2005)

    Article  Google Scholar 

  • G. Wang, A. Al-Ostaz, A.H.-D. Cheng, P.R. Mantena, Hybrid lattice particle modeling: theoretical considerations for a 2D elastic spring network for dynamic fracture simulations. Comput. Mater. Sci. 44, 1126–1134 (2009a)

    Article  Google Scholar 

  • T. Wang, T.-W. Pan, Z.W. Xing, R. Glowinski, Numerical simulation of rheology of red blood cell rouleaux in microchannels. Phys. Rev. E 79, 041916 (2009b)

    Article  Google Scholar 

  • A. Zubelewicz, Z.P. Bažant, Interface element modeling of fracture in aggregate composites. J. Eng. Mech. 113(11), 1619–1630 (1987)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Rinaldi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this entry

Cite this entry

Rinaldi, A., Mastilovic, S. (2015). Two-Dimensional Discrete Damage Models: Lattice and Rational Models. In: Voyiadjis, G. (eds) Handbook of Damage Mechanics. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5589-9_22

Download citation

Publish with us

Policies and ethics