Experimental Methods to Quantify Microdamage and Microstructure Anomalies in Fiber-Reinforced Polymer Composites: Overview

Reference work entry

Abstract

Composite structures are known to be susceptible to both manufacturing defects and in-service damage. Defects or damage can result in serviceability issues or a loss in the structural capability. Detection and characterization of defect and damage is thus of paramount importance in any successful deployment of fiber-reinforced polymer composites, particularly as they are used as primary load-carrying structures. Experimental methods for investigation of microdamage or anomalies in composites present the challenge that one single method is not capable of identifying all damage mechanisms. This chapter presents a review of selected experimental methods aimed at providing a quantitative description of selected damage types of microscale dimensions (e.g., intra-ply cracks) and microstructure anomalies (waviness, porosity) in fiber-reinforced polymer composites. The chapter discusses in the first part microscale damage characterization using microscopy, radiography acoustics, and ultrasonic techniques, while the second part is focused on the characterization of microstructural anomalies that depend on manufacturing, namely, waviness and porosity.

Keywords

Zinc Cellulose Fatigue Porosity Anisotropy 

References

  1. E. Adolfsson, P. Gudmundson, Matrix crack initiation and progression in composite laminates subjected to bending and extension. Int. J. Solids Struct. 36, 3131–3169 (1999)CrossRefMATHGoogle Scholar
  2. D.G. Aggelis, N.-M. Barkoula, T.E. Matikas, A.S. Paipetis, Acoustic structural health monitoring of composite materials: damage identification and evaluation in cross ply laminates using acoustic emission and ultrasonics. Compos. Sci. Technol. 72, 1127–1133 (2012)CrossRefGoogle Scholar
  3. J. Andersons, R. Joffe, E. Spārniņš, Statistical model of the transverse ply cracking in cross-ply laminates by strength and fracture toughness based failure criteria. Eng. Fract. Mech. 75, 2651–2665 (2008)CrossRefGoogle Scholar
  4. ASTM D2734 – 09, Standard Test Methods for Void Content of Reinforced Plastics: ASTM D2734 – 09 Standard Test Methods for Void Content of Reinforced Plastics (ASTM International, West Conshohocken, 2009)Google Scholar
  5. J. Aveston, A. Kelly, Theory of multiple fracture of fibrous composites. J. Mater. Sci. 8, 352–362 (1973)CrossRefGoogle Scholar
  6. E.J. Barbero, F.A. Cosso, F.A. Campo, Benchmark solution for degradation of elastic properties due to transverse cracking in laminated composites. Compos. Struct. 98, 242–252 (2013)CrossRefGoogle Scholar
  7. Y. Bar-Cohen, Emerging NDE technologies and challenges at the beginning of the 3rd millennium, Part II, NDT.net. 5 (2000). Available on http://www.ndt.net/article/v05n02/barcohen/barcohen.htm. Downloaded Oct 2013
  8. J.-M. Berthelot, Transverse cracking and delamination in cross-ply glass-fiber and carbon-fiber reinforced plastic laminates: static and fatigue loading. ASME Appl. Mech. Rev. 56, 111–147 (2003)CrossRefGoogle Scholar
  9. R. Böhm, W. Hufenbach, Experimentally based strategy for damage analysis of textile-reinforced composites under static loading. Compos. Sci. Technol. 70, 1330–1337 (2010)CrossRefGoogle Scholar
  10. D.J. Bull, L. Helfen, I. Sinclair, S.M. Spearing, T. Baumbach, A comparison of multi-scale 3D X-ray tomographic inspection techniques for assessing carbon fibre composite impact damage. Compos. Sci. Technol. 75, 55–61 (2013)CrossRefGoogle Scholar
  11. V.N. Bulsara, R. Talreja, J. Qu, Damage initiation under transverse loading of unidirectional composites with arbitrarily distributed fibers. Compos. Sci. Technol. 59, 673–682 (1999)CrossRefGoogle Scholar
  12. M. Castaings, B. Hosten, T. Kundu, Inversion of ultrasonic, plane-wave transmission data in composite plates to infer viscoelastic material properties. NDT&E Int. 33, 377–392 (2000)CrossRefGoogle Scholar
  13. S. K. Chakrapani, V. Dayal, D.J. Barnard, A. Eldal, R. Krafka, Ultrasonic Rayleigh wave inspection of waviness in wind turbine blades: experimental and finite element method, in Review of Progress in Quantitative Nondestructive Evaluation, Burlington, July 2011. AIP Conf. Proc. 1430, 1911–1917 (2012), http://proceedings.aip.org/resource/2/apcpcs/1430/1/1911_1. Accessed 23 Feb 2013
  14. H.-J. Chun, J.-Y. Shin, I.M. Daniel, Effects of material and geometric nonlinearities on the tensile and compressive behavior of composite materials with fiber waviness. Compos. Sci. Technol. 61(1), 125–134 (2001)CrossRefGoogle Scholar
  15. M.V. Cid Alfaro, A.S.J. Suiker, R. De Borst, Transverse failure behavior of fiber-epoxy systems. J. Compos. Mater. 44, 1493–1516 (2010)CrossRefGoogle Scholar
  16. F.W. Crossman, W.J. Warren, A.S.D. Wang, G.E. Law Jr., Initiation and growth of transverse cracks and edge delamination in composite laminates Part 2. Experimental correlation. J. Compos. Mater. 14, 88–108 (1980)CrossRefGoogle Scholar
  17. I.M. Daniel, S.C. Wooh, I. Komsky, Quantitative porosity characterization of composite materials by means of ultrasonic attenuation measurement. J. Nondestruct. Eval. 11(1), 1–8 (1992)CrossRefGoogle Scholar
  18. V. Dayal, Wave propagation in a composite with a wavy sublamina. J. Nondestruct. Eval. 14(1), 1–7 (1995). doi:10.1007/bf00735666MathSciNetCrossRefGoogle Scholar
  19. S.F. de Andrade Silva, J.W. Williams, B.R. Müller, M.P. Hentschel, P.D. Portella, N. Chawla, Three-dimensional microstructure visualization of porosity and Fe-rich inclusions in SiC particle-reinforced Al Ally matrix composites by X-ray synchrotron tomography. Metall. Mater. Trans. A 41(8), 2121–2128 (2010)CrossRefGoogle Scholar
  20. K. Diamanti, C. Soutis, Structural health monitoring techniques for aircraft composite structures. Prog. Aerosp. Sci. 46, 342–352 (2010)CrossRefGoogle Scholar
  21. R. F. Elhajjar, M. T. Lo Ricco, A modified average stress criterion for open-hole tension strength in the presence of localized wrinkling. Plast. Rubbers Compos. 41(9), 396–406 (2012)Google Scholar
  22. R.F. Elhajjar, D.R. Petersen, Gaussian function characterization of unnotched tension behavior in a carbon/epoxy composite containing localized fiber waviness. Compos. Struct. 93(9), 2400–2408 (2011). doi:10.1016/J.Compstruct.2011.03.029CrossRefGoogle Scholar
  23. L. Farge, J. Varna, Z. Ayadi, Use of full-field measurements to evaluate analytical models for laminates with intralaminar cracks. J. Compos. Mater. 46, 2739–2752 (2012)CrossRefGoogle Scholar
  24. J.P. Favre, J.C. Laizet, Amplitude and counts per event analysis of the acoustic emission generated by the transverse cracking of cross-ply CFRP. Compos. Sci. Technol. 36, 27–43 (1989)CrossRefGoogle Scholar
  25. R. Gauvin, M. Chibani, P. Lafontaine, The modeling of pressure distribution in resin transfer molding. J. Reinf. Plast. Compos. 6(4), 367–377 (1987)CrossRefGoogle Scholar
  26. F. Ghezzo, D.R. Smith, T.N. Starr, T. Perram, A.F. Starr, T.K. Darlington, R.K. Baldwin, S.J. Oldenburg, Development and characterization of healable carbon fiber composites with a reversibly cross linked polymer. J. Compos. Mater. 44(13), 1587–1603 (2010)CrossRefGoogle Scholar
  27. G. Gupta, A. Zbib, A. El-Ghannam, M. Khraisheh, H. Zbib, Characterization of a novel bioactive composite using advanced X-ray computed tomography. Compos. Struct. 71(3), 423–428 (2005)CrossRefGoogle Scholar
  28. A.L. Highsmith, K.L. Reifsnider, Stiffness reduction mechanisms in composite laminates, in Damage in Composite Materials, ed. by K.L. Reifsnider (ASTM STP 775, Philadelphia, 1982), pp. 103–117Google Scholar
  29. H.M. Hsiao, I.M. Daniel, Effect of fiber waviness on stiffness and strength reduction of unidirectional composites under compressive loading. Compos. Sci. Technol. 56(5), 581–593 (1996a)CrossRefGoogle Scholar
  30. H.M. Hsiao, I.M. Daniel, Nonlinear elastic behavior of unidirectional composites with fiber waviness under compressive loading. J. Eng. Mater. T ASME 118(4), 561–570 (1996b)CrossRefGoogle Scholar
  31. H.M. Hsiao, I.M. Daniel, Elastic properties of composites with fiber waviness. Compos. Part A Appl. S 27(10), 931–941 (1996c)CrossRefGoogle Scholar
  32. K. Jemielniak, Some aspects of acoustic emission signal pre-processing. J. Mater. Process Technol. 109(3), 242–247 (2001)CrossRefGoogle Scholar
  33. N.C.W. Judd, W.W. Wright, Voids and their effects on the mechanical properties of composites-an appraisal. SAMPE J. 14(1), 10–14 (1978)Google Scholar
  34. J. Kastner, B. Plank, D. Salaberger, J. Sekelja. Defect and porosity determination of fibre reinforced polymers by x-ray computed tomography, in 2nd International Symposium on NDT in Aerospace 2010 (Hamburg, Germany 2010), http://www.ndt.net/article/aero2010/papers/we1a2.pdf. Accessed 23 Feb 2013
  35. S.S. Kessler, S.M. Spearing, C. Soutis, Damage detection in composite materials using Lamb wave methods. Smart Mater. Struct. 11, 269–278 (2002)CrossRefGoogle Scholar
  36. R. Koller, S. Chang, Y. Xi, Fiber-reinforced polymer bars under freeze-thaw cycles and different loading rates. J. Compos. Mater. 41(1), 5–25 (2007)CrossRefGoogle Scholar
  37. M.C. Lafarie-Frenot, C. Hénaff-Gardin, Formation and growth of 90° ply fatigue cracks in carbon/epoxy laminates. Compos. Sci. Technol. 40, 307–324 (1991)CrossRefGoogle Scholar
  38. V. La Saponara, W. Lestari, C. Winkelmann, L. Arronche, H-Y. Tang, in Review of Progress in Quantitative Nondestructive Evaluation, San Diego, July 2010. AIP Conf. Proc. 1335, 927–934 (2011), http://proceedings.aip.org/resource/2/apcpcs/1335/1/927_1. Accessed 23 Feb 2013
  39. J. Lee, C. Soutis, A study on the compressive strength of thick carbon fibre-epoxy laminates. Compos. Sci. Technol. 67(10), 2015–2026 (2007)CrossRefGoogle Scholar
  40. L. Liu, B.-M. Zhang, D.-F. Wang, Z.-J. Wu, Effects of cure cycles on void content and mechanical properties of composite laminates. Compos. Struct. 73(3), 303–309 (2006)CrossRefGoogle Scholar
  41. D. Lovering, Boeing finds new problem in 787, installing Patch. Seattle Times (2009), http://seattletimes.nwsource.com/html/localnews/2009664552_apusboeing7874thldwritethru.html. Accessed 23 Feb 2013
  42. S. Mall, Integrity of graphite/epoxy laminate embedded with piezoelectric sensor/actuator under monotonic and fatigue loads. Smart Mater. Struct. 11, 527–533 (2002)CrossRefGoogle Scholar
  43. P.W. Manders, T.-W. Chou, F.R. Jones, J.W. Rock, Statistical analysis of multiple fracture in 0°/90°/0° glass fibre/epoxy resin laminates. J. Mater. Sci. 18, 2876–2889 (1983)CrossRefGoogle Scholar
  44. Mathworks, Matlab, R2011a edn. (Mathworks, Natick, 2011)Google Scholar
  45. L.N. McCartney, G.A. Schoeppner, W. Becker, Comparison of models for transverse ply cracks in composite laminates. Compos. Sci. Technol. 60, 2347–2359 (2010)CrossRefGoogle Scholar
  46. A.J. Moffat, P. Wright, L. Helfen, T. Baumbach, G. Johnson, S.M. Spearing, I. Sinclair, In situ synchrotron computed laminography of damage in carbon fibre-epoxy [90/0]s laminates. Scripta Mater. 62, 97–100 (2010)CrossRefGoogle Scholar
  47. S.F. Muller de Almeida, Z.S. Nogueira Neto, Effect of void content on the strength of composite laminates. Compos. Struct. 28(2), 139–148 (1994)CrossRefGoogle Scholar
  48. N.K. Naik, Woven-fibre thermoset composites, in Fatigue in Composites: Science and Technology of the Fatigue Response of Fibre-Reinforced Plastics, ed. by B. Harris (CRC Press, Boca Raton, 2003)Google Scholar
  49. A.H. Nayfeh, The general problem of elastic wave propagation in multilayered anisotropic media. J. Acoust. Soc. Am. 89(4), 1521–1531 (1991)MathSciNetCrossRefGoogle Scholar
  50. K. Ogi, S. Yashiro, K. Niimi, A probabilistic approach for transverse crack evolution in a composite laminate under variable amplitude cyclic loading. Compos. Part A Appl. S 41, 383–390 (2010)CrossRefGoogle Scholar
  51. P. Oliver, J.P. Cottu, B. Ferret, Effects of cure cycle pressure and voids on some mechanical properties of carbon/epoxy laminates. Composites 26(7), 509–515 (1995)CrossRefGoogle Scholar
  52. F. París, A. Blázquez, L.N. McCartney, A. Barroso, Characterization and evolution of matrix and interface related damage in [0/90]s laminates under tension. Part II: Experimental evidence. Compos. Sci. Technol. 70, 1176–1183 (2010)CrossRefGoogle Scholar
  53. Y. Promboon, Acoustic Emission Source Location (The University of Texas, Austin, 2000), p. 343Google Scholar
  54. I. I. Qamhia, E. M. Lauer-Hunt, R. Elhajjar, Identification of acoustic emissions from porosity and waviness defects in continuous fiber reinforced composites. ASTM J. Adv. Civ. Eng. Mater. 2(1), 14 pp (2013)Google Scholar
  55. X.P. Qing, S.J. Beard, A. Kumar, T.K. Ooi, F.-K. Chang, Built-in sensor network for structural health monitoring of composite structures. J. Intel. Mater. Syst. Struct. 18, 39–49 (2007)CrossRefGoogle Scholar
  56. J.L. Rose, A. Pilarski, J.J. Ditri, An approach to guided wave mode selection for inspection of laminated plate. J. Reinf. Plast. Compos. 12, 536–544 (1993)CrossRefGoogle Scholar
  57. C. Roy, M. Elghorba, Monitoring progression of mode-II delamination during fatigue loading through acoustic-emission in laminated glass-fiber composite. Polym. Compos. 9(5), 345–351 (1988)CrossRefGoogle Scholar
  58. K. Schaaf, P. Rye, F. Ghezzo, A. Starr, S. Nemat-Nasser, Optimization of mechanical properties of composite materials with integrated embedded sensors networks, in Proceedings of SPIE, Smart Structures and Materials: Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems, vol 6174, (San Diego, CA, 2007), p. 617443 (5 pp.)Google Scholar
  59. P.J. Schilling, B.P.R. Karedia, A.K. Tatiparthi, M.A. Verges, P.D. Herrington, X-ray computed microtomography of internal damage in fiber reinforced polymer matrix composites. Compos. Sci. Technol. 65, 2071–2078 (2005)CrossRefGoogle Scholar
  60. M.P.J. Schöpfer, A. Arslan, J.J. Walsh, C. Childs, Reconciliation of contrasting theories for fracture spacing in layered rocks. J. Struct. Geol. 33, 551–565 (2011)CrossRefGoogle Scholar
  61. K.J. Schubert, A.S. Herrmann, On attenuation and measurement of Lamb waves in viscoelastic composites. Compos. Struct. 94, 177–185 (2011)Google Scholar
  62. K.J. Schubert, A.S. Herrmann, On the influence of moisture absorption on Lamb wave propagation and measurement in viscoelastic CFRP using surface applied piezoelectric sensors. Compos. Struct. 94, 3635–3643 (2012)CrossRefGoogle Scholar
  63. A.E. Scott, M. Mavrogordato, P. Wright, I. Sinclair, S.M. Spearing, In situ fibre fracture measurement in carbon-epoxy laminates using high resolution computed tomography. Compos. Sci. Technol. 71, 1471–1477 (2011)CrossRefGoogle Scholar
  64. M.D. Seale, B.T. Smith, W.H. Prosser, Lamb wave assessment of fatigue and thermal damage in composites. J. Acoust. Soc. Am. 103, 2416–2424 (1998)CrossRefGoogle Scholar
  65. V.V. Silberschmidt, Matrix cracking in cross-ply composites: effect of randomness. Compos. Part A Appl. S 36, 129–135 (2005)CrossRefGoogle Scholar
  66. D.A. Singh, A.J. Vizzini, Structural integrity of composite laminates with interlaced actuators. Smart Mater. Struct. 3, 71–79 (1994)CrossRefGoogle Scholar
  67. P.M. Sisneros, P. Yang, R.F. Elhajjar, Fatigue and impact behaviour of carbon fibre composite bicycle forks. Fatigue Fract. Eng. M 35(7), 672–682 (2012)CrossRefGoogle Scholar
  68. BF. Sørensen, R. Talreja, Effect of nonuniformity of fiber distribution on thermally-induced residual stresses and cracking in ceramic matrix composites. Mech. Mater. 16, 351–363 (1993)Google Scholar
  69. K.V. Steiner, R.F. Eduljee, X. Huang, J.W. Gillespie, Ultrasonic NDE techniques for the evaluation of matrix cracking in composite laminates. Compos. Sci. Technol. 53(2), 193–198 (1995)CrossRefGoogle Scholar
  70. W.W. Stinchcomb, Nondestructive evaluation of damage accumulation processes in composite laminates. Compos. Sci. Technol. 25, 103–118 (1986)CrossRefGoogle Scholar
  71. Z. Su, L. Ye, Y. Lu, Guided Lamb waves for identification of damage in composite structures: a review. J. Sound Vib. 295, 753–780 (2006)CrossRefGoogle Scholar
  72. M.P.F. Sutcliffe, S.L. Lemanski, A.E. Scott, Measurement of fibre waviness in industrial composite components. Compos. Sci. Technol. 72(16), 2016–2023 (2012)CrossRefGoogle Scholar
  73. R. Talreja, C.V. Singh, Damage and Failure of Composite Materials (Cambridge University Press, New York, 2012)CrossRefGoogle Scholar
  74. H.-Y. Tang, C. Winkelmann, W. Lestari, V. La Saponara, Composite structural health monitoring through use of embedded PZT sensors. J. Intel. Mater. Syst. Struct. 22, 739–755 (2011)CrossRefGoogle Scholar
  75. M. Thomas, N. Boyard, L. Perez, Y. Jarny, D. Delaunay, Representative volume element of anisotropic unidirectional carbon-epoxy composite with high-fibre volume fraction. Compos. Sci. Technol. 68, 3184–3192 (2008)CrossRefGoogle Scholar
  76. J. Tong, F.J. Guild, S.L. Ogin, P.A. Smith, On matrix crack growth in quasi-isotropic laminates −1. Experimental investigation. Compos. Sci. Technol. 57, 1527–1535 (1997)CrossRefGoogle Scholar
  77. C. Toscano, C. Vitiello, Influence of the stacking sequence on the porosity in carbon fiber composites. J. Appl. Polym. Sci. 122(6), 3583–3589 (2011)CrossRefGoogle Scholar
  78. D. Tsamtsakis, M. Wevers, P. de Meester, Acoustic emission from CFRP laminates during fatigue loading. J. Reinf. Plast. Compos. 17, 1185–1201 (1998)Google Scholar
  79. G.Z. Voyiadjis, A.H. Almasri, Experimental study and fabric tensor quantification of microcrack distribution in composite materials. J. Compos. Mater. 41, 713–745 (2007)CrossRefGoogle Scholar
  80. A.S.D. Wang, K.C. Yan, On modeling matrix failure in composites. Compos. Part A Appl. S 36, 1335–1346 (2005)CrossRefGoogle Scholar
  81. A.W. Wharmby, F. Ellyin, J.D. Wolodko, Observations on damage development in fibre reinforced polymer laminates under cyclic loading. Int. J. Fatigue. 25, 437–446 (2003)CrossRefGoogle Scholar
  82. J.J. Williams, Z. Flom, A.A. Amell, N. Chawla, X. Xiao, F. De Carlo, Damage evolution in SiC particle reinforced Al alloy matrix composites by X-ray synchrotron tomography. Acta Mater. 58, 6194–6205 (2010)Google Scholar
  83. M.R. Wisnom, J.W. Atkinson, Fibre waviness generation and measurement and its effect on compressive strength. J. Reinf. Plast. Compos. 19(2), 96–110 (2000)CrossRefGoogle Scholar
  84. P.J. Withers, M. Preuss, Fatigue and damage in structural materials studied by X-ray tomography. Annu. Rev. Mater. Res. 42, 81–103 (2012)CrossRefGoogle Scholar
  85. S.-C. Wooh, I.M. Daniel, Wave propagation in composite materials with fibre waviness. Ultrasonics 33(1), 3–10 (1995)CrossRefGoogle Scholar
  86. P. Wright, A. Moffat, I. Sinclair, S.M. Spearing, High resolution tomographic imaging and modelling of notch tip damage in a laminated composite. Compos. Sci. Technol. 70, 1444–1452 (2010)CrossRefGoogle Scholar
  87. P. Wright, X. Fu, I. Sinclair, S.M. Spearing, Ultra-high resolution computed tomography of damage in notched carbon fiber-epoxy composites. J. Compos. Mater. 42, 1993–2002 (2008)CrossRefGoogle Scholar
  88. P. Yang, R. Elhajjar, Porosity defect morphology effects in carbon fiber – epoxy composites. Polym. Plast. Technol. 51(11), 1141–1148 (2012)CrossRefGoogle Scholar
  89. S.W. Yurgartis, B.S. MacGibbon, P. Mulvaney, Quantification of microcracking in brittle-matrix composites. J. Mater. Sci. 27, 6679–6686 (1992)CrossRefGoogle Scholar
  90. C. Zhang, W.K. Binienda, G.N. Morscher, R.E. Martin, L.W. Kohlman, Experimental and FEM study of thermal cycling induced microcracking in carbon/epoxy triaxial braided composites. Compos. Part A Appl. S 46, 34–44 (2013)CrossRefGoogle Scholar
  91. S.M. Ziola, M.R. Gorman, Source location in thin plates using cross-correlation. J. Acoust. Soc. Am. 90(5), 2551–2556 (1991)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of Mechanical and Aerospace EngineeringUniversity of CaliforniaDavisUSA
  2. 2.Department of Civil and Environmental EngineeringUniversity of WisconsinMilwaukeeUSA

Personalised recommendations