Skip to main content

The Statistical Distribution Method, the Decision-Tree Method and Simulation Method for Capital Budgeting Decisions

  • Reference work entry
  • First Online:
Encyclopedia of Finance
  • 3718 Accesses

Abstract

The information needed for capital budgeting is generally not known with certainty. Therefore, capital-budgeting procedures under conditions of uncertainty should be developed to improve the precision of assessment of the value of risky investment projects. The three alternative methods are introduced to analyze the capital budgeting decisions under uncertainty. Statistical distribution methods, decision tree methods, and simulation methods are three interrelated methods of analysis for capital-budgeting decisions under uncertainty because all of them allow the statistical distributions of the net present values to be explicitly estimated. Under these methods, an interval rather than a point estimate of the expected NPV will be presented. Hence, the stochastic methods discussed in this paper are generally more objective and general than the traditional capital budgeting methods under the assumption of certainty in cash flows.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 679.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 849.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Substituting Equation70.2b and letting ρτt = 1, we have

    $$ \begin{aligned} {{\sigma}^2}_{{NPV}} & = {{{{[\mathop{\sum}\limits_{{t = 1}}^N \frac{{{\mathop{\sigma}\nolimits_{{Xt}}^2 }}}{{(1 + k\mathop{)}\nolimits^{{2t}} }} + 2 \mathop{\sum}\limits_{{\tau = 1}}^N \mathop{\sum}\limits_{{t = 1}}^N \frac{{{{\sigma}_t}}}{{\left( {(1 + k\mathop{)}\nolimits^t } \right)}}\,\frac{{{{\sigma}_{\tau }}}}{{\left( {(1 + k\mathop{)}\nolimits^{\tau } } \right)}}]}}^{{1/2}}}} \\ & = {{[{{\left( {\sum\limits_{{t = 1}}^N {\frac{{{{\sigma}_t}}}{{{{{\left( {1 + k} \right)}}^t}}}} } \right)}^2}]}^{{1/2}}} = \sum\limits_{{t = 1}}^N {\frac{{{{\sigma}_t}}}{{{{{\left( {1 + k} \right)}}^t}}}} \\ \end{aligned} $$
  2. 2.

    Substituting Equation70.2b and letting ρτt = 0, we have

    $$ {{\sigma}_{{NPV}}} = [\sum\limits_{{t = 1}}^N {\frac{{\sigma_t^2}}{{{{{\left( {1 + k} \right)}}^{{2t}}}}}{{]}^{{1/2}}}} $$
  3. 3.

    Assume the net cash flow at time t, Xt, is related to the sources as follows

    $$ {{\mathrm{X}}_{\mathrm{t}}} = {{\mathrm{Y}}_{\mathrm{t}}} + {{\mathrm{Z}}^{{(1)}}}_{\mathrm{t}} + {{\mathrm{Z}}^{{(2)}}}_{\mathrm{t}} + \ldots + {{\mathrm{Z}}^{{(\mathrm{m})}}}_{\mathrm{t}} $$

    where Yt, Z (1)t ,…, and Z (m)t are following normal distribution. The random variables for Yt are mutually independent, Cov(Yt, Yτ) = 0, while the random variables for Z (1)t ,…, and Z (m)t are perfectly positive correlated, Cov(Z (h)t , Z(h) τ) = \( {{\sigma}_{{{{Z}_{\tau }}^{{(h)}}}}}{{\sigma}_{{{{Z}_t}^{{(h)}}}}} \)for h = 1,…,m.

    Then variance of NPV is defined as follows:

    $$ {{\sigma}^2}_{{NPV}} = {\left[\mathop{\sum}\limits_{{t = 1}}^N \frac{{{\mathop{\sigma}\nolimits_{{Xt}}^2 }}}{{(1 + k\mathop{)}\nolimits^{{2t}} }} + 2 \mathop{\sum}\limits_{{\tau = 1}}^N \mathop{\sum}\limits_{{t = 1}}^N \frac{{{Cov (\mathop{X}\nolimits_{\tau }, \mathop{X}\nolimits_t )}}}{{(1 + k\mathop{)}\nolimits^{\tau } (1 + k\mathop{)}\nolimits^t }}\right]} $$

    where \( \mathop{{ \sigma }}\nolimits_{{Xt}}^2 = \mathop{{ \sigma }}\nolimits_{{Yt}}^2 + \mathop{{ \ \sigma }}\nolimits_{{{{Z}_t}^{{(1)}}}}^2 + \mathop{{ \ \sigma }}\nolimits_{{{{Z}_t}^{{(2)}}}}^2 + \ldots + \mathop{{ \ \sigma }}\nolimits_{{{{Z}_t}^{{(m)}}}}^2 \)

    $$ \eqalign{ Cov (\mathop{X}\nolimits_{\tau }, \mathop{X}\nolimits_t ) = Cov ({{Y}_{\tau }} + {{Z}_{\tau }}^{{(1)}} + {{Z}_{\tau }}^{{(2)}} + \ldots + {{Z}_{\tau }}^{{(m)}},\cr {{Y}_t}+ {{Z}_t}^{{(1)}} + {{Z}_t}^{{(2)}} + \ldots + {{Z}_t}^{{(m)}}) \hfill \cr = Cov (\mathop{Y}\nolimits_{\tau }, \mathop{Y}\nolimits_t ) + Cov ({{Z}_{\tau }}^{{(1)}},{{Z}_t}^{{(1)}}) + \ldots\cr + Cov ({{Z}_{\tau }}^{{(m)}},{{Z}_{\tau }}^{{(m)}}) \hfill \\}<!endgathered> $$

    Substituting the covariance and variance of Yt, Z (1)t ,…, and Z (m)t , we have

    $$ \begin{gathered} {{\sigma}^2}_{{NPV}} = {[\mathop{\sum}\limits_{{t = 1}}^N \frac{{{\mathop{{ ~ \sigma }}\nolimits_{{Yt}}^2 + \mathop{{ ~ \sigma }}\nolimits_{{{{Z}_t}^{{(1)}}}}^2 + \mathop{{ ~ \sigma }}\nolimits_{{{{Z}_t}^{{(2)}}}}^2 + \ldots + \mathop{{ ~ \sigma }}\nolimits_{{{{Z}_t}^{{(m)}}}}^2 }}}{{(1 + k\mathop{)}\nolimits^{{2t}} }} + 2 \mathop{\sum}\limits_{{h = 1}}^m \mathop{\sum}\limits_{{\tau = 1}}^N \mathop{\sum}\limits_{{t = \tau + 1}}^N \frac{{{{{\sigma}_{{{{Z}_{\tau }}^{{(h)}}}}}{{\sigma}_{{{{Z}_t}^{{(h)}}}}}}}}{{(1 + k\mathop{)}\nolimits^{\tau } (1 + k\mathop{)}\nolimits^t }}]} \hfill \\ = {[\mathop{\sum}\limits_{{t = 1}}^N \frac{{{\mathop{{ ~ \sigma }}\nolimits_{{Yt}}^2 }}}{{(1 + k\mathop{)}\nolimits^{{2t}} }} + \mathop{\sum}\limits_{{h = 1}}^m (\mathop{\sum}\limits_{{t = 1}}^N \frac{{{\mathop{{ ~ \sigma }}\nolimits_{{{{Z}_t}^{{(h)}}}}^2 }}}{{(1 + k\mathop{)}\nolimits^{{2t}} }}) + 2\mathop{\sum}\limits_{{h = 1}}^m \mathop{\sum}\limits_{{\tau = 1}}^N \mathop{\sum}\limits_{{t = \tau + 1}}^N \frac{{{{{\sigma}_{{{{Z}_{\tau }}^{{(h)}}}}}{{\sigma}_{{{{Z}_t}^{{(h)}}}}}}}}{{(1 + k\mathop{)}\nolimits^{\tau } (1 + k\mathop{)}\nolimits^t }}]} \hfill \\ = {[\mathop{\sum}\limits_{{t = 1}}^N \frac{{{\mathop{{ ~ \sigma }}\nolimits_{{Yt}}^2 }}}{{(1 + k\mathop{)}\nolimits^{{2t}} }} + \mathop{\sum}\limits_{{h = 1}}^m [\mathop{\sum}\limits_{{t = 1}}^N \frac{{{\mathop{{ ~ \sigma }}\nolimits_{{{{Z}_t}^{{(h)}}}}^2 }}}{{(1 + k\mathop{)}\nolimits^{{2t}} }} + 2\mathop{\sum}\limits_{{\tau = 1}}^N \mathop{\sum}\limits_{{t = \tau + 1}}^N \frac{{{{{\sigma}_{{{{Z}_{\tau }}^{{(h)}}}}}{{\sigma}_{{{{Z}_t}^{{(h)}}}}}}}}{{(1 + k\mathop{)}\nolimits^{\tau } (1 + k\mathop{)}\nolimits^t }}]}] \hfill \\ = {\mathop{\sum}\limits_{{t = 1}}^N \frac{{{\mathop{\sigma}\nolimits_{{yt}}^2 }}}{{(1 + k\mathop{)}\nolimits^{{2t}} }}} + \mathop{\sum}\limits_{{h = 1}}^m {(\mathop{\sum}\limits_{{t = 1}}^N \mathop{{\frac{{\mathop{\sigma}\nolimits_{{zt}}^{{(h)}} }}{{(1 + k\mathop{)}\nolimits^t }})}}\nolimits^2 } \hfill \\ \end{gathered} $$
  4. 4.

    The detailed discussion about capital budgeting decisions can be found in Lee et al. (2009), Lee and Lee (2006), and Lee (2009).

References

  • Bonini, C. P. 1975. “Comment on formulating correlated cash-flow streams”. Engineering Economist 20, 269–314.

    Article  Google Scholar 

  • Chen, S. N., and W. T. Moore. 1982. “Investment decision under uncertainty: Application of estimation risk in the Hillier approach”. Journal of Financial and Quantitative Analysis 17, 425–440.

    Article  Google Scholar 

  • Hertz, D. B. 1964. “Risk analysis in capital investment”. Harvard Business Review 42, 95–106.

    Google Scholar 

  • Hillier, F. 1963. “The derivation of probabilistic information for the evaluation of risky investments”. Management Science 9,443–457.

    Article  Google Scholar 

  • Lee, A. C., J. C. Lee, and C. F. Lee. 2009. Financial analysis, planning and forecasting: Theory and Application, 2nd ed.. World Scientific Publishing Company, Singapore.

    Book  Google Scholar 

  • Lee, C. F., and A. C. Lee. 2006. Encyclopedia of Finance, Springer, New York, New York.

    Book  Google Scholar 

  • Lee, C. F. 2009. Handbook of Quantitative Finance and Risk Management, Springer, New York, New York.

    Google Scholar 

  • Wang, S.Y. and C.F. Lee. 2010. “A fuzzy real option valuation approach to capital budgeting under uncertainty environment”. International Journal of Information Technology & Decision Making 9(5), 695–713.

    Article  Google Scholar 

  • Wonnacott, T. H., and R. J. Wonnacott. 1990. Introductory Statistics for Business and Economics, 4th ed., John Willey, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng-Few Lee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this entry

Cite this entry

Lee, CF., Tai, T. (2013). The Statistical Distribution Method, the Decision-Tree Method and Simulation Method for Capital Budgeting Decisions. In: Lee, CF., Lee, A. (eds) Encyclopedia of Finance. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-5360-4_70

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-5360-4_70

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4614-5359-8

  • Online ISBN: 978-1-4614-5360-4

  • eBook Packages: Business and Economics

Publish with us

Policies and ethics