Advertisement

Fourier Transform Light Scattering of Tissues

  • Taewoo Kim
  • Shamira Sridharan
  • Gabriel Popescu
Reference work entry

Abstract

We review the basic principles of light-tissue interaction and common methods of investigation. The mathematical framework for describing weakly scattering regime (the Born approximation) as well as the strong scattering regime (the diffusion equation) are described. Traditional techniques based on polarization, time-resolved, single and multiple scattering are reviewed. We then introduce Fourier transform light scattering (FTLS), which is a recent development from our own laboratory. FTLS is the spatial analogue of Fourier transform spectroscopy, in the sense that it provides angular scattering (spatial frequency) data from phase and amplitude measurements in the spatial (image) domain. We show that FTLS can be used as a diagnostic tool by translating the quantitative phase information into data of clinical relevance. Further, FTLS allows us to extract scattering parameters of the tissue from imaging unlabeled, thin tissue slices, using a relationship which we call the scattering-phase theorem. Using these measurements, FTLS can predict the outcome of many other experiments, including time resolved and enhanced backscattering experiments.

Keywords

Optical Coherence Tomography Differential Cross Section Born Approximation Scattered Field Digital Holography 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    V.V. Tuchin, Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis (SPIE Press, Bellingham, 2007)Google Scholar
  2. 2.
    A. Wax, V. Backman (eds.), Biomedical Applications of Light Scattering (McGraw-Hill, New York, 2010)Google Scholar
  3. 3.
    C.F. Bohren, D.R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983)Google Scholar
  4. 4.
    H.C. van de Hulst, Light Scattering by Small Particles (Dover Publications, New York, 1981)Google Scholar
  5. 5.
    A. Ishimaru, Electromagnetic Wave Propagation, Radiation, and Scattering (Prentice Hall, Englewood Cliffs, 1991)Google Scholar
  6. 6.
    B.J. Berne, R. Pecora, Dynamic Light Scattering with Applications to Chemistry, Biology and Physics (Wiley, New York, 1976)Google Scholar
  7. 7.
    Milestones in light microscopy. Nat. Cell Biol. 11, 1165 (2009)Google Scholar
  8. 8.
    B. Alberts, Essential Cell Biology: An Introduction to the Molecular Biology of the Cell (Garland, New York, 2004)Google Scholar
  9. 9.
    S.J. Singer, G.L. Nicolson, Fluid mosaic model of structure of cell-membranes. Science 175, 720 (1972)ADSCrossRefGoogle Scholar
  10. 10.
    A. Dunn, R. Richards-Kortum, Three-dimensional computation of light scattering from cells. IEEE J. Sel. Topics Quant. Electron. 2, 898–905 (1996)CrossRefGoogle Scholar
  11. 11.
    J.R. Mourant, J.P. Freyer, A.H. Hielscher, A.A. Eick, D. Shen, T.M. Johnson, Mechanisms of light scattering from biological cells relevant to noninvasive optical-tissue diagnostics. Appl. Opt. 37, 3586–3593 (1998)ADSCrossRefGoogle Scholar
  12. 12.
    G.M. Hale, M.R. Querry, Optical-constants of water in 200-nm to 200-μm wavelength region. Appl. Opt. 12, 555–563 (1973)ADSCrossRefGoogle Scholar
  13. 13.
    S. Takatani, M.D. Graham, Theoretical-analysis of diffuse reflectance from a 2-layer tissue model. IEEE Trans. Biomed. Eng. 26, 656–664 (1979)CrossRefGoogle Scholar
  14. 14.
    M. Born, E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge University Press, Cambridge/New York, 1999)Google Scholar
  15. 15.
    R.N. Bracewell, The Fourier Transform and Its Applications (McGraw Hill, Boston, 2000)Google Scholar
  16. 16.
    E. Wolf, in Advances in Imaging and Electron Physics, ed. by P.W.E. Hawkes (Academic, San Diego, 2011)Google Scholar
  17. 17.
    S.G. Demos, R.R. Alfano, Temporal gating in highly scattering media by the degree of optical polarization. Opt. Lett. 21, 161–163 (1996)ADSCrossRefGoogle Scholar
  18. 18.
    S.G. Demos, H. Savage, A.S. Heerdt, S. Schantz, R.R. Alfano, Time resolved degree of polarization for human breast tissue. Opt. Commun. 124, 439–442 (1996)ADSCrossRefGoogle Scholar
  19. 19.
    K.M. Yoo, R.R. Alfano, Time resolved depolarization of multiple backscattered light from random-media. Phys. Lett. A 142, 531–536 (1989)ADSCrossRefGoogle Scholar
  20. 20.
    R.R. Anderson, Polarized-light examination and photography of the skin. Arch. Dermatol. 127, 1000–1005 (1991)CrossRefGoogle Scholar
  21. 21.
    S.G. Demos, R.R. Alfano, Optical polarization imaging. Appl. Opt. 36, 150–155 (1997)ADSCrossRefGoogle Scholar
  22. 22.
    V. Backman, R. Gurjar, K. Badizadegan, L. Itzkan, R.R. Dasari, L.T. Perelman, M.S. Feld, Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ. IEEE J. Sel. Topics Quant. Electron. 5, 1019–1026 (1999)CrossRefGoogle Scholar
  23. 23.
    I. Georgakoudi, B.C. Jacobson, J. Van Dam, V. Backman, M.B. Wallace, M.G. Muller, Q. Zhang, K. Badizadegan, D. Sun, G.A. Thomas, L.T. Perelman, M.S. Feld, Fluorescence, reflectance, and light-scattering spectroscopy for evaluating dysplasia in patients with Barrett’s esophagus. Gastroenterology 120, 1620–1629 (2001)CrossRefGoogle Scholar
  24. 24.
    R.S. Gurjar, V. Backman, L.T. Perelman, I. Georgakoudi, K. Badizadegan, I. Itzkan, R.R. Dasari, M.S. Feld, Imaging human epithelial properties with polarized light-scattering spectroscopy. Nat. Med. 7, 1245–1248 (2001)CrossRefGoogle Scholar
  25. 25.
    M. Hunter, V. Backman, G. Popescu, M. Kalashnikov, C.W. Boone, A. Wax, G. Venkatesh, K. Badizadegan, G.D. Stoner, M.S. Feld, Tissue self-affinity and light scattering in the born approximation: a new model for precancer diagnosis. Phys. Rev. Lett. 97, 138102 (2006)ADSCrossRefGoogle Scholar
  26. 26.
    A. Amelink, M.P.L. Bard, S.A. Burgers, H.J.C.M. Sterenborg, Single-scattering spectroscopy for the endoscopic analysis of particle size in superficial layers of turbid media. Appl. Opt. 42, 4095–4101 (2003)ADSCrossRefGoogle Scholar
  27. 27.
    A. Wax, C.H. Yang, J.A. Izatt, Fourier-domain low-coherence interferometry for light-scattering spectroscopy. Opt. Lett. 28, 1230–1232 (2003)ADSCrossRefGoogle Scholar
  28. 28.
    T.H. Foster, J.D. Wilson, Characterization of lysosomal contribution to whole-cell light scattering by organelle ablation. J. Biomed. Opt. 12, 030503 (2007)CrossRefGoogle Scholar
  29. 29.
    J.R. Mourant, J.P. Freyer, A.H. Hielscher, A.A. Eick, D. Shen, T.M. Johnson, Mechanisms of light scattering from biological cells relevant to noninvasive optical-tissue diagnostics. Appl. Opt. 37, 3586–3593 (1998)ADSCrossRefGoogle Scholar
  30. 30.
    V. Backman, M.B. Wallace, L.T. Perelman, J.T. Arendt, R. Gurjar, M.G. Muller, Q. Zhang, G. Zonios, E. Kline, J.A. McGilligan, S. Shapshay, T. Valdez, K. Badizadegan, J.M. Crawford, M. Fitzmaurice, S. Kabani, H.S. Levin, M. Seiler, R.R. Dasari, I. Itzkan, J. Van Dam, M.S. Feld, Detection of preinvasive cancer cells. Nature 406, 35–36 (2000)ADSCrossRefGoogle Scholar
  31. 31.
    L.T. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J.M. Crawford, M.S. Feld, Observation of periodic fine structure in reflectance from biological tissue: a new technique for measuring nuclear size distribution. Phys. Rev. Lett. 80, 627–630 (1998)ADSCrossRefGoogle Scholar
  32. 32.
    C. Lau, O. Scepanovic, J. Mirkovic, S. McGee, C.-C. Yu, J. Stephen Fulghum, M. Wallace, J. Tunnell, K. Bechtel, M. Feld, Re-evaluation of model-based light-scattering spectroscopy for tissue spectroscopy. J. Biomed. Opt. 14, 024031 (2009)ADSCrossRefGoogle Scholar
  33. 33.
    P.-E. Wolf, G. Maret, Weak localization and coherent backscattering of photons in disordered media. Phys. Rev. Lett. 55, 2696 (1985)ADSCrossRefGoogle Scholar
  34. 34.
    E. Akkermans, P.E. Wolf, R. Maynard, Coherent backscattering of light by disordered media – analysis of the peak line-shape. Phys. Rev. Lett. 56, 1471–1474 (1986)ADSCrossRefGoogle Scholar
  35. 35.
    F.C. Mackintosh, S. John, Coherent backscattering of light in the presence of time-reversal-noninvariant and parity-nonconserving media. Phys. Rev. B 37, 1884–1897 (1988)ADSCrossRefGoogle Scholar
  36. 36.
    Y.L. Kim, Y. Liu, R.K. Wali, H.K. Roy, V. Backman, Low-coherent backscattering spectroscopy for tissue characterization. Appl. Opt. 44, 366–377 (2005)ADSCrossRefGoogle Scholar
  37. 37.
    F. Bevilacqua, C. Depeursinge, Monte Carlo study of diffuse reflectance at source-detector separations close to one transport mean free path. J. Opt. Soc. Am. 16, 2935–2945 (1999)ADSCrossRefGoogle Scholar
  38. 38.
    G. Zonios, L.T. Perelman, V. Backman, R. Manoharan, M. Fitzmaurice, J. Van Dam, M.S. Feld, Diffuse reflectance spectroscopy of human adenomatous colon polyps in vivo. Appl. Opt. 38, 6628–6637 (1999)ADSCrossRefGoogle Scholar
  39. 39.
    N. Subhash, J.R. Mallia, S.S. Thomas, A. Mathews, P. Sebastian, Oral cancer detection using diffuse reflectance spectral ratio R540/R575 of oxygenated hemoglobin bands. J. Biomed. Opt. 11, 014018 (2006)ADSCrossRefGoogle Scholar
  40. 40.
    C.F. Zhu, G.M. Palmer, T.M. Breslin, J. Harter, N. Ramanujam, Diagnosis of breast cancer using diffuse reflectance spectroscopy: comparison of a Monte Carlo versus partial least squares analysis based feature extraction technique. Lasers Surg. Med. 38, 714–724 (2006)CrossRefGoogle Scholar
  41. 41.
    Z. Volynskaya, A.S. Haka, K.L. Bechtel, M. Fitzmaurice, R. Shenk, N. Wang, J. Nazemi, R.R. Dasari, M.S. Feld, Diagnosing breast cancer using diffuse reflectance spectroscopy and intrinsic fluorescence spectroscopy. J. Biomed. Opt. 13, 024012 (2008)ADSCrossRefGoogle Scholar
  42. 42.
    D. Huang, E.A. Swanson, C.P. Lin, J.S. Schuman, W.G. Stinson, W. Chang, M.R. Hee, T. Flotte, K. Gregory, C.A. Puliafito, J.G. Fujimoto, Optical coherence tomography. Science 254, 1178–1181 (1991)ADSCrossRefGoogle Scholar
  43. 43.
    G. Popescu, A. Dogariu, Optical path-length spectroscopy of wave propagation in random media. Opt. Lett. 24, 442–444 (1999)ADSCrossRefGoogle Scholar
  44. 44.
    M.S. Patterson, B. Chance, B.C. Wilson, Time resolved reflectance and transmittance for the noninvasive measurement of tissue optical-properties. Appl. Opt. 28, 2331–2336 (1989)ADSCrossRefGoogle Scholar
  45. 45.
    N. Lue, J. Bewersdorf, M.D. Lessard, K. Badizadegan, K. Dasari, M.S. Feld, G. Popescu, Tissue refractometry using Hilbert phase microscopy. Opt. Lett. 32, 3522 (2007)ADSCrossRefGoogle Scholar
  46. 46.
    B. Rappaz, P. Marquet, E. Cuche, Y. Emery, C. Depeursinge, P.J. Magistretti, Measurement of the integral refractive index and dynamic cell morphometry of living cells with digital holographic microscopy. Opt. Express 13, 9361–9373 (2005)ADSCrossRefGoogle Scholar
  47. 47.
    Y.K. Park, M. Diez-Silva, G. Popescu, G. Lykotrafitis, W. Choi, M.S. Feld, S. Suresh, Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum. Proc. Natl. Acad. Sci. U.S.A. 105, 13730 (2008)ADSCrossRefGoogle Scholar
  48. 48.
    H. Ding, F. Nguyen, S.A. Boppart, G. Popescu, Optical properties of tissues quantified by Fourier transform light scattering. Opt. Lett. 34, 1372 (2009)ADSCrossRefGoogle Scholar
  49. 49.
    N. Lue, W. Choi, G. Popescu, Z. Yaqoob, K. Badizadegan, R.R. Dasari, M.S. Feld, Live cell refractometry using Hilbert phase microscopy and confocal reflectance microscopy. J. Phys. Chem. A 113, 13327–13330 (2009)CrossRefGoogle Scholar
  50. 50.
    H.F. Ding, Z. Wang, F. Nguyen, S.A. Boppart, G. Popescu, Fourier transform light scattering of inhomogeneous and dynamic structures. Phys. Rev. Lett. 101, 238102 (2008)ADSCrossRefGoogle Scholar
  51. 51.
    G. Popescu, in Methods in Cell Biology, ed. by B.P. Jena (Academic, San Diego, 2008), pp. 87–115Google Scholar
  52. 52.
    G. Popescu, Quantitative phase imaging of cells and tissues (McGraw-Hill, New York, 2011)Google Scholar
  53. 53.
    D. Zicha, G.A. Dunn, An image-processing system for cell behavior studies in subconfluent cultures. J. Microsc. 179, 11–21 (1995)CrossRefGoogle Scholar
  54. 54.
    G.A. Dunn, D. Zicha, in Cell Biology: A Laboratory Handbook, ed. by J.E. Celis (Academic, San Diego, 1998)Google Scholar
  55. 55.
    G.A. Dunn, D. Zicha, P.E. Fraylich, Rapid, microtubule-dependent fluctuations of the cell margin. J. Cell Sci. 110, 3091–3098 (1997)Google Scholar
  56. 56.
    D. Zicha, E. Genot, G.A. Dunn, I.M. Kramer, TGF beta 1 induces a cell-cycle-dependent increase in motility of epithelial cells. J. Cell Sci. 112, 447–454 (1999)Google Scholar
  57. 57.
    G.A. Dunn, D. Zicha, Dynamics of fibroblast spreading. J. Cell Sci. 108, 1239–1249 (1995)Google Scholar
  58. 58.
    T.E. Gureyev, A. Roberts, K.A. Nugent, Phase retrieval with the transport-of-intensity equation – matrix solution with use of Zernike polynomials. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 12, 1932–1941 (1995)MathSciNetADSCrossRefGoogle Scholar
  59. 59.
    T.E. Gureyev, A. Roberts, K.A. Nugent, Partially coherent fields, the transport-of-intensity equation, and phase uniqueness. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 12, 1942–1946 (1995)MathSciNetADSCrossRefGoogle Scholar
  60. 60.
    J.W. Goodman, R.W. Lawrence, Digital image formation from electronically detected holograms. Appl. Phys. Lett. 11, 77 (1967)ADSCrossRefGoogle Scholar
  61. 61.
    D. Gabor, A new microscopic principle. Nature 161, 777 (1948)ADSCrossRefGoogle Scholar
  62. 62.
    I. Yamaguchi, T. Zhang, Phase-shifting digital holography. Opt. Lett. 22, 1268–1270 (1997)ADSCrossRefGoogle Scholar
  63. 63.
    C.J. Mann, L.F. Yu, C.M. Lo, M.K. Kim, High-resolution quantitative phase-contrast microscopy by digital holography. Opt. Express 13, 8693–8698 (2005)ADSCrossRefGoogle Scholar
  64. 64.
    D. Carl, B. Kemper, G. Wernicke, G. von Bally, Parameter-optimized digital holographic microscope for high-resolution living-cell analysis. Appl. Opt. 43, 6536–6544 (2004)ADSCrossRefGoogle Scholar
  65. 65.
    P. Marquet, B. Rappaz, P.J. Magistretti, E. Cuche, Y. Emery, T. Colomb, C. Depeursinge, Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy. Opt. Lett. 30, 468–470 (2005)ADSCrossRefGoogle Scholar
  66. 66.
    N. Lue, W. Choi, G. Popescu, R.R. Dasari, K. Badizadegan, M.S. Feld, Quantitative phase imaging of live cells using fast Fourier phase microscopy. Appl. Opt. 46, 1836 (2007)ADSCrossRefGoogle Scholar
  67. 67.
    G. Popescu, L.P. Deflores, J.C. Vaughan, K. Badizadegan, H. Iwai, R.R. Dasari, M.S. Feld, Fourier phase microscopy for investigation of biological structures and dynamics. Opt. Lett. 29, 2503–2505 (2004)ADSCrossRefGoogle Scholar
  68. 68.
    G. Popescu, T. Ikeda, C.A. Best, K. Badizadegan, R.R. Dasari, M.S. Feld, Erythrocyte structure and dynamics quantified by Hilbert phase microscopy. J. Biomed. Opt. Lett. 10, 060503 (2005)ADSCrossRefGoogle Scholar
  69. 69.
    T. Ikeda, G. Popescu, R.R. Dasari, M.S. Feld, Hilbert phase microscopy for investigating fast dynamics in transparent systems. Opt. Lett. 30, 1165–1168 (2005)ADSCrossRefGoogle Scholar
  70. 70.
    Y.K. Park, G. Popescu, K. Badizadegan, R.R. Dasari, M.S. Feld, Diffraction phase and fluorescence microscopy. Opt. Express 14, 8263 (2006)ADSCrossRefGoogle Scholar
  71. 71.
    G. Popescu, T. Ikeda, R.R. Dasari, M.S. Feld, Diffraction phase microscopy for quantifying cell structure and dynamics. Opt. Lett. 31, 775–777 (2006)ADSCrossRefGoogle Scholar
  72. 72.
    M. Mir, Z. Wang, Z. Shen, M. Bednarz, R. Bashir, I. Golding, S.G. Prasanth, G. Popescu, Measuring cell cycle-dependent mass growth. Proc. Natl. Acad. Sci. U.S.A. 108, 13124 (2011)CrossRefGoogle Scholar
  73. 73.
    R. Wang, Z. Wang, J. Leigh, N. Sobh, L. Millet, M.U. Gillette, A.J. Levine, G. Popescu, One-dimensional deterministic transport in neurons measured by dispersion-relation phase spectroscopy. J. Phys.: Cond. Matter 23, 374107 (2011)CrossRefGoogle Scholar
  74. 74.
    Z. Wang, L. Millet, V. Chan, H. Ding, M.U. Gillette, R. Bashir, G. Popescu, Label-free intracellular transport measured by spatial light interference microscopy. J. Biomed. Opt. 16, 026019 (2011)ADSCrossRefGoogle Scholar
  75. 75.
    Z. Wang, L.J. Millet, M. Mir, H. Ding, S. Unarunotai, J.A. Rogers, M.U. Gillette, G. Popescu, Spatial light interference microscopy (SLIM). Opt. Express 19, 1016 (2011)CrossRefGoogle Scholar
  76. 76.
    G. Popescu, T. Ikeda, R.R. Dasari, M.S. Feld, Diffraction phase microscopy for quantifying cell structure and dynamics. Opt. Lett. 31, 775–777 (2006)ADSCrossRefGoogle Scholar
  77. 77.
    G. Popescu, K. Badizadegan, R.R. Dasari, M.S. Feld, Observation of dynamic subdomains in red blood cells. J. Biomed. Opt. Lett. 11, 040503 (2006)ADSCrossRefGoogle Scholar
  78. 78.
    G. Popescu, Y. Park, N. Lue, C. Best-Popescu, L. Deflores, R.R. Dasari, M.S. Feld, K. Badizadegan, Optical imaging of cell mass and growth dynamics. Am. J. Physiol. Cell Physiol. 295, C538–C544 (2008)CrossRefGoogle Scholar
  79. 79.
    T. Ikeda, G. Popescu, R.R. Dasari, M.S. Feld, Hilbert phase microscopy for investigating fast dynamics in transparent systems. Opt. Lett. 30, 1165–1167 (2005)ADSCrossRefGoogle Scholar
  80. 80.
    F. Zernike, Phase contrast, a new method for the microscopic observation of transparent objects, Part 1. Physica 9, 686–698 (1942)ADSCrossRefGoogle Scholar
  81. 81.
    F. Zernike, Phase contrast, a new method for the microscopic observation of transparent objects, Part 2. Physica 9, 974–986 (1942)ADSCrossRefGoogle Scholar
  82. 82.
    F. Zernike, How I discovered phase contrast. Science 121, 345 (1955)ADSCrossRefGoogle Scholar
  83. 83.
    G. Popescu, Z. Wang, H.F. Ding, Scattering-phase theorem. Opt. Lett. 36, 1215–1217 (2011)ADSCrossRefGoogle Scholar
  84. 84.
    R.N. Bracewell, The Fourier Transform and its Applications (McGraw Hill, Boston, 2000)Google Scholar
  85. 85.
    H.F. Ding, Z. Wang, F.T. Nguyen, S.A. Boppart, L.J. Millet, M.U. Gillette, J.M. Liu, M.D. Boppart, G. Popescu, Fourier transform light scattering (FTLS) of cells and tissues. J. Comput. Theor. Nanosci. 7, 2501–2511 (2010)CrossRefGoogle Scholar
  86. 86.
    H.F. Ding, E. Berl, Z. Wang, L.J. Millet, M.U. Gillette, J.M. Liu, M. Boppart, G. Popescu, Fourier transform light scattering of biological structure and dynamics. IEEE J. Sel. Topics Quant. Electron. 16, 909–918 (2010)CrossRefGoogle Scholar
  87. 87.
    H. Ding, L.J. Millet, M.U. Gillette, G. Popescu, Actin-driven cell dynamics probed by Fourier transform light scattering. Biomed. Opt. Express 1, 260 (2010)CrossRefGoogle Scholar
  88. 88.
    Z. Wang, H. Ding, G. Popescu, Scattering-phase theorem. Opt. Lett. 36, 1215 (2011)ADSCrossRefGoogle Scholar
  89. 89.
    H. Ding, Z. Wang, X. Liang, S.A. Boppart, G. Popescu, Measuring the scattering parameters of tissues from quantitative phase imaging of thin slices. Opt. Lett. 36, 2281 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Taewoo Kim
    • 1
  • Shamira Sridharan
    • 1
  • Gabriel Popescu
    • 1
  1. 1.Quantitative Light Imaging Laboratory, Department of Electrical and Computer Engineering, Beckman Institute for Advanced Science & TechnologyUniversity of Illinois at Urbana-ChampaignUrbanaUSA

Personalised recommendations