Ocular Imaging Combining Ultrahigh Resolution and High Speed OCT

Reference work entry


The impact of ultrahigh-resolution and ultrahigh-speed OCT technique on corneal and retinal imaging is shown. The capabilities of advanced OCT system for imaging of the cornea and the thickness determination of the tear film, corneal epithelium, and Bowman’s layer over a wide field of view are demonstrated. The high transverse and axial resolution of OCT system allowing one to image individual nerve fiber bundles, the parafoveal capillary network, and individual cone photoreceptors is described.


Optical Coherence Tomography Retinal Nerve Fiber Layer Inner Nuclear Layer Outer Plexiform Layer Inner Plexiform Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors thank Cedric Blatter, Amardeep Singh, Christoph Kolbitsch, Branislav Grajciar, Angelika Unterhuber, Ursula Schmidt-Erfurth, Sabine Schriefl and Christian Ahlers from the Medical University of Vienna, Austria and Prof. Theo Lasser from the Ecole Polytechnique Fédérale de Lausanne, Switzerland. Light source support by Femtolasers Produktions GmbH, Vienna, Austria and Exalos AG, Schlieren, Switzerland as well as financial support by the European Union FP7-HEALTH program (grant No. 201880 FUN-OCT) is acknowledged.


  1. 1.
    A.F. Fercher, Ophthalmic laser interferometry. Proc. SPIE 658, 48–51 (1986)CrossRefGoogle Scholar
  2. 2.
    A.F. Fercher, K. Mengedoht, W. Werner, Eye-length measurement by interferometry with partially coherent light. Opt. Lett. 13, 186–188 (1988)ADSCrossRefGoogle Scholar
  3. 3.
    A.F. Fercher, Ophthalmic interferometry, in Optics in Medicine, Biology and Environmental Research. Selected Contributions to the First International Conference on Optics Within Life Sciences (OWLSI), Garmisch-Partenkirchen, Germany, 12–16 August 1990 (ICO-15SAT), ed. by G. von Bally, S. Khanna (Elsevier, Amsterdam/London/New York/Tokyo, 1993), pp. 221–228Google Scholar
  4. 4.
    D. Huang, E.A. Swanson, C.P. Lin, J.S. Schuman, W.G. Stinson, W. Chang, M.R. Hee, T. Flotte, K. Gregory, C.A. Puliafito et al., Optical coherence tomography. Science 254, 1178–1181 (1991)Google Scholar
  5. 5.
    A.F. Fercher, C.K. Hitzenberger, W. Drexler, G. Kamp, H. Sattmann, In vivo optical coherence tomography. Am. J. Ophthalmol. 116, 113–114 (1993)Google Scholar
  6. 6.
    E.A. Swanson, J.A. Izatt, M.R. Hee, D. Huang, C.P. Lin, J.S. Schuman, C.A. Puliafito, J.G. Fujimoto, In vivo retinal imaging by optical coherence tomography. Opt. Lett. 18, 1864–1866 (1993)ADSCrossRefGoogle Scholar
  7. 7.
    W. Drexler, U. Morgner, F.X. Kartner, C. Pitris, S.A. Boppart, X.D. Li, E.P. Ippen, J.G. Fujimoto, In vivo ultrahigh-resolution optical coherence tomography. Opt. Lett. 24, 1221–1223 (1999)ADSCrossRefGoogle Scholar
  8. 8.
    W. Drexler, U. Morgner, R.K. Ghanta, F.X. Kartner, J.S. Schuman, J.G. Fujimoto, Ultrahigh-resolution ophthalmic optical coherence tomography. Nat. Med. 7, 502–507 (2001)CrossRefGoogle Scholar
  9. 9.
    W. Drexler, H. Sattmann, B. Hermann, T.H. Ko, M. Stur, A. Unterhuber, C. Scholda, O. Findl, M. Wirtitsch, J.G. Fujimoto, A.F. Fercher, Enhanced visualization of macular pathology with the use of ultrahigh-resolution optical coherence tomography. Arch. Ophthalmol. Chic 121, 695–706 (2003)CrossRefGoogle Scholar
  10. 10.
    W. Drexler, Ultrahigh-resolution optical coherence tomography. J. Biomed. Opt. 9, 47–74 (2004)ADSCrossRefGoogle Scholar
  11. 11.
    A.F. Fercher, C.K. Hitzenberger, G. Kamp, S.Y. Elzaiat, Measurement of intraocular distances by backscattering spectral interferometry. Opt. Commun. 117, 43–48 (1995)ADSCrossRefGoogle Scholar
  12. 12.
    R. Leitgeb, C. Hitzenberger, A. Fercher, Performance of Fourier domain vs. time domain optical coherence tomography. Opt. Express 11(889–894) (2003)Google Scholar
  13. 13.
    J.F. de Boer, B. Cense, B.H. Park, M.C. Pierce, G.J. Tearney, B.E. Bouma, Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography. Opt. Lett. 28, 2067–2069 (2003)ADSCrossRefGoogle Scholar
  14. 14.
    M. Choma, M. Sarunic, C. Yang, J. Izatt, Sensitivity advantage of swept source and Fourier domain optical coherence tomography. Opt. Express 11, 2183–2189 (2003)ADSCrossRefGoogle Scholar
  15. 15.
    R. Huber, M. Wojtkowski, J.G. Fujimoto, Fourier domain mode locking (FDML): a new laser operating regime and applications for optical coherence tomography. Opt. Express 14, 3225–3237 (2006)ADSCrossRefGoogle Scholar
  16. 16.
    W. Wieser, B.R. Biedermann, T. Klein, C.M. Eigenwillig, R. Huber, Multi-megahertz OCT: high quality 3D imaging at 20 million A-scans and 4.5 GVoxels per second. Opt. Express 18, 14685–14704 (2010)ADSCrossRefGoogle Scholar
  17. 17.
    T. Klein, W. Wieser, C.M. Eigenwillig, B.R. Biedermann, R. Huber, Megahertz OCT for ultrawide-field retinal imaging with a 1050 nm Fourier domain mode-locked laser. Opt. Express 19, 3044–3062 (2011)ADSCrossRefGoogle Scholar
  18. 18.
    B. Potsaid, I. Gorczynska, V.J. Srinivasan, Y. Chen, J. Jiang, A. Cable, J.G. Fujimoto, Ultrahigh speed spectral/Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second. Opt. Express 16, 15149–15169 (2008)ADSCrossRefGoogle Scholar
  19. 19.
    T. Schmoll, C. Kolbitsch, R.A. Leitgeb, Ultra-high-speed volumetric tomography of human retinal blood flow. Opt. Express 17, 4166–4176 (2009)ADSCrossRefGoogle Scholar
  20. 20.
    V. Christopoulos, L. Kagemann, G. Wollstein, H. Ishikawa, M.L. Gabriele, M. Wojtkowski, V. Srinivasan, J.G. Fujimoto, J.S. Duker, D.K. Dhaliwal, J.S. Schuman, In vivo corneal high-speed, ultra high-resolution optical coherence tomography. Arch. Ophthalmol. Chic 125, 1027–1035 (2007)CrossRefGoogle Scholar
  21. 21.
    Y.S. Rabinowitz, K. Rasheed, H. Yang, J. Elashoff, Accuracy of ultrasonic pachymetry and videokeratography in detecting keratoconus. J. Cataract Refract. Surg. 24, 196–201 (1998)Google Scholar
  22. 22.
    D.Z. Reinstein, T.J. Archer, M. Gobbe, R.H. Silverman, D.J. Coleman, Epithelial thickness in the normal cornea: three-dimensional display with Artemis very high-frequency digital ultrasound. J. Refract. Surg. 24, 571–581 (2008)Google Scholar
  23. 23.
    B.R. Masters, A.A. Thaer, Real-time scanning slit confocal microscopy of the in vivo human cornea. Appl Opt. 33, 695–701 (1994)ADSCrossRefGoogle Scholar
  24. 24.
    H.F. Li, W.M. Petroll, T. Moller-Pedersen, J.K. Maurer, H.D. Cavanagh, J.V. Jester, Epithelial and corneal thickness measurements by in vivo confocal microscopy through focusing (CMTF). Curr. Eye Res. 16, 214–221 (1997)CrossRefGoogle Scholar
  25. 25.
    I. Jalbert, F. Stapleton, E. Papas, D.F. Sweeney, M. Coroneo, In vivo confocal microscopy of the human cornea. Br. J. Ophthalmol. 87, 225–236 (2003)CrossRefGoogle Scholar
  26. 26.
    Y. Komai, T. Ushiki, The three-dimensional organization of collagen fibrils in the human cornea and sclera. Invest. Ophthalmol. Vis. Sci. 32, 2244–2258 (1991)Google Scholar
  27. 27.
    N. Hutchings, T.L. Simpson, C. Hyun, A.A. Moayed, S. Hariri, L. Sorbara, K. Bizheva, Swelling of the human cornea revealed by high-speed, ultrahigh-resolution optical coherence tomography. Invest. Ophthalmol. Vis. Sci. 51, 4579–4584 (2010)CrossRefGoogle Scholar
  28. 28.
    T. Schmoll, A. Unterhuber, C. Kolbitsch, T. Le, A. Stingl, R.A. Leitgeb, Precise thickness measurements of Bowman’s layer, epithelium and tear film. Optom. Vis. Sci. 89(5), E795–E802 (2012)CrossRefGoogle Scholar
  29. 29.
    B. Povazay, K. Bizheva, A. Unterhuber, B. Hermann, H. Sattmann, A.F. Fercher, W. Drexler, A. Apolonski, W.J. Wadsworth, J.C. Knight, P.S. Russell, M. Vetterlein, E. Scherzer, Submicrometer axial resolution optical coherence tomography. Opt. Lett. 27, 1800–1802 (2002)ADSCrossRefGoogle Scholar
  30. 30.
    M. Zhao, A.N. Kuo, J.A. Izatt, 3D refraction correction and extraction of clinical parameters from spectral domain optical coherence tomography of the cornea. Opt. Express 18, 8923–8936 (2010)ADSCrossRefGoogle Scholar
  31. 31.
    S.R. Uhlhorn, D. Borja, F. Manns, J.M. Parel, Refractive index measurement of the isolated crystalline lens using optical coherence tomography. Vision Res. 48, 2732–2738 (2008)CrossRefGoogle Scholar
  32. 32.
    J.G. Perez, J.M. Meijome, I. Jalbert, D.F. Sweeney, P. Erickson, Corneal epithelial thinning profile induced by long-term wear of hydrogel lenses. Cornea 22, 304–307 (2003)CrossRefGoogle Scholar
  33. 33.
    A. Tao, J. Wang, Q. Chen, M. Shen, F. Lu, S.R. Dubovy, M.A. Shousha, Topographic thickness of Bowman’s layer determined by ultra-high resolution spectral domain-optical coherence tomography. Invest. Ophthalmol. Vis. Sci. 52, 3901–3907 (2011)CrossRefGoogle Scholar
  34. 34.
    B. Grajciar, M. Pircher, A. Fercher, R. Leitgeb, Parallel Fourier domain optical coherence tomography for in vivo measurement of the human eye. Opt. Express 13, 1131–1137 (2005)ADSCrossRefGoogle Scholar
  35. 35.
    E. Wolff, R.J. Last, Anatomy of the Eye and Orbit, Including the Central Connections, Development, and Comparative Anatomy of the Visual Apparatus (H. K. Lewis, London, 1968)Google Scholar
  36. 36.
    M. Pircher, B. Baumann, E. Gotzinger, H. Sattmann, C.K. Hitzenberger, Simultaneous SLO/OCT imaging of the human retina with axial eye motion correction. Opt. Express 15, 16922–16932 (2007)ADSCrossRefGoogle Scholar
  37. 37.
    M. Pircher, R.J. Zawadzki, Combining adaptive optics with optical coherence tomography: unveiling the cellular structure of the human retina in vivo. Expert Rev. Ophthalmol. 2, 1019–1035 (2007)CrossRefGoogle Scholar
  38. 38.
    T. Schmoll, C. Kolbitsch, R.A. Leitgeb, In vivo functional retinal optical coherence tomography. J. Biomed. Opt. 15(4), 041513 (2010)ADSCrossRefGoogle Scholar
  39. 39.
    R.S. Jonnal, J.R. Besecker, J.C. Derby, O.P. Kocaoglu, B. Cense, W. Gao, Q. Wang, D.T. Miller, Imaging outer segment renewal in living human cone photoreceptors. Opt. Express 18, 5257–5270 (2010)CrossRefGoogle Scholar
  40. 40.
    M. Pircher, J.S. Kroisamer, F. Felberer, H. Sattmann, E. Gotzinger, C.K. Hitzenberger, Temporal changes of human cone photoreceptors observed in vivo with SLO/OCT. Biomed. Opt. Express 2, 100–112 (2010)CrossRefGoogle Scholar
  41. 41.
    M. Pircher, B. Baumann, E. Gotzinger, H. Sattmann, C.K. Hitzenberger, Simultaneous SLO/OCT imaging of the human retina with axial eye motion correction. Opt. Express 15, 16922–16932 (2007)ADSCrossRefGoogle Scholar
  42. 42.
    M.R. Hee, D. Huang, E.A. Swanson, J.G. Fujimoto, Polarization-sensitive low-coherence reflectometer for birefringence characterization and ranging. J. Opt. Soc. Am. B 9, 903–908 (1992)ADSCrossRefGoogle Scholar
  43. 43.
    T. Schmoll, E. Götzinger, A. Unterhuber, C.K. Hitzenberger, R.A. Leitgeb, Ultra-high-speed polarization sensitive OCT in the human retina using a single spectrometer. Proc. SPIE 7889, 7889 0U (2011)ADSGoogle Scholar
  44. 44.
    T. Schmoll, E. Gotzinger, M. Pircher, C.K. Hitzenberger, R.A. Leitgeb, Single-camera polarization-sensitive spectral-domain OCT by spatial frequency encoding. Opt. Lett. 35, 241–243 (2010)ADSCrossRefGoogle Scholar
  45. 45.
    T. Schmoll, A.S. Singh, C. Blatter, S. Schriefl, C. Ahlers, U. Schmidt-Erfurth, R.A. Leitgeb, Imaging of the parafoveal capillary network and its integrity analysis using fractal dimension. Biomed. Opt. Express 2, 1159–1168 (2011)CrossRefGoogle Scholar
  46. 46.
    R.E. Records, Physiology of the Human Eye and Visual System (Harper & Row, Hagerstown, 1979)Google Scholar
  47. 47.
    E. Dittrich, R. Neij, T. Schmoll, S. Schriefl, C. Ahlers, R.A. Leitgeb, G. Langs, Detection of capillary vessels in optical coherence tomography based on a probabilistic kernel. Med. Image Underst. Anal. 13, 37–41 (2009)Google Scholar
  48. 48.
    W.K. Pratt, Digital Image Processing (Wiley, New York, 1991)MATHGoogle Scholar
  49. 49.
    B.J. Vakoc, R.M. Lanning, J.A. Tyrrell, T.P. Padera, L.A. Bartlett, T. Stylianopoulos, L.L. Munn, G.J. Tearney, D. Fukumura, R.K. Jain, B.E. Bouma, Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging. Nat. Med. 15, 1219–1223 (2009)CrossRefGoogle Scholar
  50. 50.
    J.W. Baish, R.K. Jain, Fractals and cancer. Cancer Res. 60, 3683–3688 (2000)Google Scholar
  51. 51.
    F. Moisy, Boxcount (Matlab Central, 2006).

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Center for Medical Physics and Biomedical EngineeringMedical University ViennaViennaAustria

Personalised recommendations