Monte-Carlo Simulations of Light Scattering in Turbid Media

Reference work entry

Abstract

The physics behind the simulation program developed by our group are explained. The various options for light transport and scattering, reflection and refraction at boundaries, light sources and detection, and output are described. In addition, some special features, like laser Doppler velocimetry, photoacoustics, and frequency-modulation scattering, are described.

Keywords

Migration Anisotropy Attenuation Coherence Autocorrelation 

References

  1. 1.
    K.M. Case, P.F. Zweifel, Linear Transport Theory (Addison-Wesley, Reading, 1967)Google Scholar
  2. 2.
    A. Ishimaru, Diffusion of light in turbid material. Appl. Opt. 28, 2210–2215 (1989)ADSCrossRefGoogle Scholar
  3. 3.
    A. Ishimaru, Wave Propagation and Scattering in Random Media, vols. 1, 2. (Academic, San Diego, 1978)Google Scholar
  4. 4.
    R.A.J. Groenhuis, H.A. Ferwerda, J.J. ten Bosch, Scattering and absorption of turbid materials determined from reflection measurements, 1: Theory. Appl. Opt. 22, 2456–2462 (1983); 2: Measuring method and calibration. Appl. Opt. 22, 2463–2467 (1983)Google Scholar
  5. 5.
    R.F. Bonner, R. Nossal, S. Havlin, G.H. Weiss, Model for photon migration in turbid biological media. J. Opt. Soc. Am. A 4, 423–432 (1987)ADSCrossRefGoogle Scholar
  6. 6.
    M.S. Patterson, B. Chance, B.C. Wilson, Time resolved reflectance and transmittance for the non-invasive measurement of tissue optical properties. Appl. Opt. 28, 2331–2336 (1989)ADSCrossRefGoogle Scholar
  7. 7.
    T.J. Farrell, M.S. Patterson, B.C. Wilson, A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo. Med. Phys. 19, 879–888 (1992)CrossRefGoogle Scholar
  8. 8.
    R.C. Haskell, L.O. Svaasand, T.T. Tsay, T.C. Feng, M.S. McAdams, B.J. Tromberg, Boundary conditions for the diffusion equation in radiative transfer. J. Opt. Soc. Am. A 11, 2727–2741 (1994)ADSCrossRefGoogle Scholar
  9. 9.
    A. Kienle, M.S. Patterson, N. Dögnitz, R. Bays, G. Wagnières, H. van den Bergh, Noninvasive determination of the optical properties of two-layered media. Appl. Opt. 37, 779–791 (1998)ADSCrossRefGoogle Scholar
  10. 10.
    A. Kienle, T. Glanzmann, In vivo determination of the optical properties of muscle with time-resolved reflecntance using a layered model. Phys. Med. Biol. 44, 2689–2702 (1999)CrossRefGoogle Scholar
  11. 11.
    F.F.M. de Mul, M.H. Koelink, M.L. Kok, P.J. Harmsma, J. Greve, R. Graaff, J.G. Aarnoudse, Laser Doppler velocimetry and Monte Carlo simulations on models for blood perfusion in tissue. Appl. Opt. 34, 6595–6611 (1995)ADSCrossRefGoogle Scholar
  12. 12.
    For further information: see the general site of the University Twente, click to “Faculties” or “Departments”, then to “Applied Physics”, “Research”, “Biophysics”, “Biomedical Optics”, “courses”Google Scholar
  13. 13.
    L. Wang, S.L. Jacques, Hybrid model of Monte-Carlo simulation and diffusion theory for light reflectance by turbid media. J. Opt. Soc. Am. A 10, 1746–1752 (1993)ADSCrossRefGoogle Scholar
  14. 14.
    V.G. Kolinko, F.F.M. de Mul, J. Greve, A.V. Priezzhev, On refraction in Monte-Carlo simulations of light transport through biological tissues. Med. Biol. Eng. Comp. 35, 287–288 (1997)CrossRefGoogle Scholar
  15. 15.
    H.C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1957, 1981)Google Scholar
  16. 16.
    G. Yao, L.V. Wang, Propagation of polarized light in turbid media: simulated animation sequences. Opt. Express 7, 198–203 (2000)ADSCrossRefGoogle Scholar
  17. 17.
    M.J. Rakovic, G.W. Kattawar, Theoretical analysis of polarization patterns from incoherent backscattering of light. Appl. Opt. 37, 3333–3338 (1998)ADSCrossRefGoogle Scholar
  18. 18.
    M.J. Rakovic, G.W. Kattawar, M. Mehrubeoglu, B.D. Cameron, L.V. Wang, S. Rastegar, G.L. Coté, Light backscattering polarization patterns from turbid media: theory and experiment. Appl. Opt. 38, 3399–3408 (1999)ADSCrossRefGoogle Scholar
  19. 19.
    W.S. Bickel, W.M. Bailey, Stokes vectors, Mueller matrices and polarized light. Am. J. Phys. 53, 468–478 (1985)ADSCrossRefGoogle Scholar
  20. 20.
    S. Bartel, A.H. Hielscher, Monte-Carlo simulations of diffuse backscattering Mueller matrix for highly scattering media. Appl. Opt. 39, 1580–1588 (2000)ADSCrossRefGoogle Scholar
  21. 21.
    X. Wang, G. Yao, L.V. Wang, Monte Carlo model and single-scattering approximation of the propagation of polarized light in turbid media containing glucose. Appl. Opt. 41, 792–801 (2002)ADSCrossRefGoogle Scholar
  22. 22.
    M. Born, E. Wolf, Principles of Optics, 6th edn. (Cambridge University Press, Cambridge, 1980–1993)Google Scholar
  23. 23.
    J.R. Zijp, J.J. ten Bosch, Pascal program to perform Mie calculations. Opt. Eng. 32, 1691–1695 (1993)ADSCrossRefGoogle Scholar
  24. 24.
    L.G. Henyey, J.L. Greenstein, Diffuse radiation in the galaxy. Astrophys. J. 93, 70–83 (1941)ADSCrossRefGoogle Scholar
  25. 25.
    C.G.A. Hoelen, F.F.M. de Mul, R. Pongers, A. Dekker, Three-dimensional photoacoustic imaging of blood vessels in tissue. Opt. Lett. 23, 648–650 (1998)ADSCrossRefGoogle Scholar
  26. 26.
    C.G.A. Hoelen, F.F.M. de Mul, A new theoretical approach to photoacoustic signal generation. J. Acoust. Soc. Am. 106, 695–706 (1999)ADSCrossRefGoogle Scholar
  27. 27.
    C.G.A. Hoelen, A. Dekker, F.F.M. de Mul, Detection of photoacoustic transients originating from microstructures in optically diffuse media such as biological tissue. IEEE – UFFC 48, 37–47 (2001)CrossRefGoogle Scholar
  28. 28.
    C.G.A. Hoelen, F.F.M. de Mul, Image reconstruction for photoacoustic scanning of tissue structures. Appl. Opt. 39, 5872–5883 (2000)ADSCrossRefGoogle Scholar
  29. 29.
    R. Graaff, K. Rinzema, Practical improvements on photon diffusion theory: application to isotropic scattering. Phys. Med. Biol. 46, 3043–3050 (2001)CrossRefGoogle Scholar
  30. 30.
    M. Keijser, W.M. Star, P.R. Storchi, Optical diffusion in layered media. Appl. Opt. 27, 1820–1824 (1988)ADSCrossRefGoogle Scholar
  31. 31.
    L.V. Wang, S.L. Jacques, Source of error in calculation of optical diffuse reflectance from turbid media using diffusion theory. Comput. Meth. Progr. Biomed. 61, 163–170 (2000)CrossRefGoogle Scholar
  32. 32.
    L.V. Wang, H.-I. Wu, Biomedical Optics: Principles and Imaging (Wiley-Interscience, Hoboken, 2007)Google Scholar
  33. 33.
  34. 34.
    I.V. Meglinski, Modeling the reflectance spectra of the optical radiation for random inhomogeneous multi-layered highly scattering and absorbing media by the Monte Carlo technique. Quant. Electr. 31(12), 1101–1107 (2001)ADSCrossRefGoogle Scholar
  35. 35.
    D.Y. Churmakov, I.V. Meglinski, D.A. Greenhalgh, Influence of refractive index matching on the photon diffuse reflectance. Phys. Med. Biol. 47(23), 4271–4285 (2002)CrossRefGoogle Scholar
  36. 36.
    A. Doronin, I. Meglinski, Online object oriented Monte Carlo computational tool for the needs of biomedical optics. Biomed. Opt. Express 2(9), 2461–2469 (2011)CrossRefGoogle Scholar
  37. 37.
    Meglinski I. SPIE News, website http://biophotonics.otago.ac.nz (2012)
  38. 38.
    M. McShane, S. Rastegar, M. Pishko, G. Cote, Monte Carlo modeling of implantable fluorescent analyte sensors. IEEE Trans. Biomed. Eng. 47(5), 624–632 (2000)CrossRefGoogle Scholar
  39. 39.
    K. Vishwanath, B. Pogue, M. Mycek, Quantitative fluorescence spectroscopy in turbid media: comparison of theoretical, experimental and computational methods. Phys. Med. Biol. 47(18), 3387–3405 (2002)CrossRefGoogle Scholar
  40. 40.
    D.Y. Churmakov, I.V. Meglinski, S.A. Piletsky, D.A. Greenhalgh, Analysis of skin tissues spatial fluorescence distribution by the Monte Carlo simulation. J. Phys. D: Appl. Phys. 36(14), 1722–1728 (2003)ADSCrossRefGoogle Scholar
  41. 41.
    I.V. Meglinski, S.J. Matcher, Quantitative assessment of skin layers absorption and skin reflectance spectra simulation in visible and near infrared spectral region. Physiol. Meas. 23(4), 741–753 (2002)CrossRefGoogle Scholar
  42. 42.
    I.V. Meglinski, D.Y. Churmakov, A.N. Bashkatov, E.A. Genina, V.V. Tuchin, The enhancement of confocal images of tissues at bulk optical immersion. Laser Phys. 13(1), 65–69 (2003)Google Scholar
  43. 43.
    V.L. Kuzmin, I.V. Meglinski, Coherent multiple scattering effects and Monte Carlo method. JETP Lett. 79(3), 109–112 (2004)ADSCrossRefGoogle Scholar
  44. 44.
    I.V. Meglinski, V.L. Kuzmin, D.Y. Churmakov, D.A. Greenhalgh, Monte Carlo simulation of coherent effects in multiple scattering. Proc. Royal Soc. A 461(2053), 43–53 (2005)ADSCrossRefGoogle Scholar
  45. 45.
    E. Berrocal, I.V. Meglinski, D.A. Greenhalgh, M.A. Linne, Image transfer through the complex scattering turbid media. Laser Phys. Lett. 3(9), 464–468 (2006)ADSCrossRefGoogle Scholar
  46. 46.
    I.V. Meglinski, M. Kirillin, V.L. Kuzmin, R. Myllylä, Simulation of polarization-sensitive optical coherence tomography images by a Monte Carlo method. Opt. Lett. 33(14), 1581–1583 (2008)ADSCrossRefGoogle Scholar
  47. 47.
    M. Kirillin, I. Meglinski, E. Sergeeva, V.L. Kuzmin, R. Myllylä, Simulation of optical coherence tomography images by Monte Carlo modeling based on polarization vector approach. Opt. Express 18(21), 21714–21724 (2010)ADSCrossRefGoogle Scholar
  48. 48.
    E. Alerstam, T. Svensson, S. Andersson-Engels, Parallel computing with graphics processing units for high-speed Monte Carlo simulation of photon migration. J. Biomed. Opt. 13, 060504 (2008)ADSCrossRefGoogle Scholar
  49. 49.
    D.A. Boas, J.P. Culver, J.J. Stott, A.K. Dunn, Three dimensional Monte Carlo code for photon migration through complex heterogeneous media including the adult human head. Opt. Express 10(3), 159–170 (2002)ADSCrossRefGoogle Scholar
  50. 50.
    J. Ramella-Roman, S. Prahl, S. Jacques, Three Monte Carlo programs of polarized light transport into scattering media: part I. Opt. Express 13(12), 4420–4438 (2005)ADSCrossRefGoogle Scholar
  51. 51.
    P. Valisuo, I. Kaartinen, V. Tuchin, J. Alander, New closed-form approximation for skin chromophore mapping. J. Biomed. Opt. 16(4), 046012-1–046012-10 (2011)ADSCrossRefGoogle Scholar
  52. 52.
    T. Binzoni, T.S. Leung, D. Van De Ville, The photo-electric current in laser-Doppler flowmetry by Monte Carlo simulations. Phys. Med. Biol. 54(14), N303–N318 (2009)ADSCrossRefGoogle Scholar
  53. 53.
    A.N. Yaroslavsky, I.V. Yaroslavsky, T. Goldbach, H.-J. Schwarzmaier, The optical properties of blood in the near infrared spectral range. Proc. SPIE. 2678, 314–324 (1996)ADSCrossRefGoogle Scholar
  54. 54.
    A.N. Yaroslavsky, I.V. Yaroslavsky, T. Goldbach, H.-J. Schwarzmaier, Different phase function approximations to determine optical properties of blood: a comparison. Proc. SPIE. 2982, 324–330 (1997)ADSCrossRefGoogle Scholar
  55. 55.
    A.N. Yaroslavsky, I.V. Yaroslavsky, T. Goldbach, H.-J. Schwarzmaier, Influence of the scattering phase function approximation on the optical properties of blood determined from the integrating sphere measurements. J. Biomed. Opt. 4(1), 47–53 (1999)ADSCrossRefGoogle Scholar
  56. 56.
    A. Roggan, M. Friebel, K. Dorschel, A. Hahn, G. Müller, Optical properties of circulating human blood in the wavelength range 400–2500 nm. J. Biomed. Opt. 4(1), 36–46 (1999)ADSCrossRefGoogle Scholar
  57. 57.
    D. Chicea, I. Turcu, Testing a new multiple light scattering phase function using RWMCS. J. Optoelectr. Adv. Mater. 8(4), 1516–1519 (2006)Google Scholar
  58. 58.
    D. Chicea, I. Turcu, RWMCS – An alternative random walk Monte Carlo code to simulate light scattering in biological suspensions. Optik 118, 232–236 (2007)ADSCrossRefGoogle Scholar
  59. 59.
    E. Berrocal, D. Sedarsky, M. Paciaroni, I.V. Meglinski, M.A. Linne, Laser light scattering in turbid media part I: experimental and simulated results for the spatial intensity distribution. Opt. Express 15, 10649–10665 (2007)ADSCrossRefGoogle Scholar
  60. 60.
    E. Berrocal, D. Sedarsky, M. Paciaroni, I.V. Meglinski, M.A. Linne, Laser light scattering in turbid media part II: spatial and temporal analysis of individual scattering orders via Monte Carlo simulation. Opt. Express 17, 13792–13809 (2009)ADSCrossRefGoogle Scholar
  61. 61.
    D. Sakotam, S. Takatani, Photon-cell interactive Monte Carlo model based on the geometrical optics theory for photon migration in blood by incorporating both extra and intra-cellular pathways. J. Biomed. Opt. 15(6), 065001, 1–14 (2010)Google Scholar
  62. 62.
    A.N. Bashkatov, E.A. Genina, V.V. Tuchin, Optical properties of skin, subcutaneous, and muscle tissues: a review. J. Innov. Opt. Health Sci. 4(1), 9–38 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Applied PhysicsUniversity of TwenteAE EnschedeThe Netherlands

Personalised recommendations