Advertisement

4HNE Protein Adducts in Autistic Spectrum Disorders: Rett Syndrome and Autism

  • Giuseppe Valacchi
  • Alessandra Pecorelli
  • Cinzia Signorini
  • Silvia Leoncini
  • Lucia Ciccoli
  • Claudio De Felice
  • Joussef Hayek
Reference work entry

Abstract

Autistic spectrum disorders (ASDs) are a complex group of neurodevelopment disorders, still poorly understood and treatment refractory. They are considered to be the result of a complex interaction between a genetic background and environmental factors and appear to be steadily increasing in frequency, although the reasons for this increase remain partially unexplained.

Oxidative stress (OS) is a well-known pathogenic mechanism involved in several human pathologies. By definition, OS occurs when the antioxidant response is insufficient to balance the production of reactive oxygen species (ROS) leading to cell damage and developing or worsening of several pathologies.

Brain is particularly vulnerable to ROS damage compared to other organs, due to its high metabolic rate combined with a relatively low concentration of antioxidant proteins. OS and mitochondrial dysfunction have been implicated in all major neurodegenerative disorders (i.e., amyotrophic lateral sclerosis, Parkinson’s and Alzheimer’s disease), and a potential relationship between OS and ASDs has been repeatedly explored and generally found to be related to either increased OS or altered antioxidant defenses.

Nevertheless, even if several OS biomarkers have been the focus of researches on ASDs, only recent works from our group were able to show the increased levels of 4-hydroxynonenal protein adducts (4HNE PAs) in both classic autism and Rett syndrome (RTT), two of neurodevelopmental disorders that are part of the complex group of ASDs.

4HNE is an aldehyde end product generated by peroxidation of the most abundant class of ω-6 polyunsaturated fatty acids (PUFAs), and its reactivity is due to α,β-double bond. In consequence of its ability to covalently bind proteins, phospholipids, and DNA, it is recognized as “second toxic messenger” of free radicals. Oxidative protein modifications by 4HNE possess the potential to have serious detrimental effects in living organisms since they lead to alteration in their structure and biological activity, having also the potential to form cross-links in proteins.

4HNE PAs are observed in typical and atypical RTT and their levels change as a function of the time (clinical stages of typical form) and of phenotype severity (different clinical variants). Moreover, a systemic oxidant status with increased 4HNE PAs levels is also detected in classic autistic disorder. Thus, our researches showed that OS, i.e., 4HNE PAs, is present in both classic autism and RTT and that oxidative protein damage could play a key role in the pathogenic mechanisms of ASDs.

Keywords

Chronic Fatigue Syndrome Asperger Syndrome Rett Syndrome Autistic Patient Protein Adduct 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Adams JB, Baral M, Geis E, Mitchell J, Ingram J, Hensley A, Zappia I, Newmark S, Gehn E, Rubin RA, Mitchell K, Bradstreet J, El-Dahr JM. The severity of autism is associated with toxic metal body burden and red blood cell glutathione levels. J Toxicol. 2009;2009:532640.PubMedGoogle Scholar
  2. Adams JB, Audhya T, McDonough-Means S, Rubin RA, Quig D, Geis E, Gehn E, Loresto M, Mitchell J, Atwood S, Barnhouse S, Lee W. Nutritional and metabolic status of children with autism vs. neurotypical children, and the association with autism severity. Nutr Metab. 2011a;8:34.CrossRefGoogle Scholar
  3. Adams JB, Johansen LJ, Powell LD, Quig D, Rubin RA. Gastrointestinal flora and gastrointestinal status in children with autism–comparisons to typical children and correlation with autism severity. BMC Gastroenterol. 2011b;11:22.PubMedCrossRefGoogle Scholar
  4. Al-Gadani Y, El-Ansary A, Attas O, Al-Ayadhi L. Metabolic biomarkers related to oxidative stress and antioxidant status in Saudi autistic children. Clin Biochem. 2009;42:1032–40.PubMedCrossRefGoogle Scholar
  5. Amir RE, Van den Veyver IB, Wan M, Tran CQ, Francke U, Zoghbi HY. Rett syndrome is caused by mutation in X–linked MECP2, encoding methyl–CpG–binding protein 2. Nat Genet. 1999;23:185–8.PubMedCrossRefGoogle Scholar
  6. Ariani F, Hayek G, Rondinella D, Artuso R, Mencarelli MA, Spanhol-Rosseto A, Pollazzon M, Buoni S, Spiga O, Ricciardi S, Meloni I, Longo I, Mari F, Broccoli V, Zappella M, Renieri A. FOXG1 is responsible for the congenital variant of Rett syndrome. Am J Hum Genet. 2008;83:89–93.PubMedCrossRefGoogle Scholar
  7. Bayou N, M’rad R, Ahlem B, Béchir Helayem M, Chaabouni H. Autism: an overview of genetic aetiology. Tunis Med. 2008;86:573–8.PubMedGoogle Scholar
  8. Behl A, Swami G, Sircar SS, Bhatia MS, Banerjee BD. Relationship of possible stress-related biochemical markers to oxidative/antioxidative status in obsessive-compulsive disorder. Neuropsychobiology. 2010;61:210–4.PubMedCrossRefGoogle Scholar
  9. Blanc EM, Kelly JF, Mark RJ, Waeg G, Mattson MP. 4-Hydroxynonenal, an aldehydic product of lipid peroxidation, impairs signal transduction associated with muscarinic acetylcholine and metabotropic glutamate receptors: possible action on G alpha(q/11). J Neurochem. 1997;69:570–80.PubMedCrossRefGoogle Scholar
  10. Bošković M, Vovk T, Kores Plesničar B, Grabnar I. Oxidative stress in schizophrenia. Curr Neuropharmacol. 2011;9:301–12.PubMedCrossRefGoogle Scholar
  11. Butterfield DA, Reed T, Sultana R. Roles of 3-nitrotyrosine- and 4-hydroxynonenal-modified brain proteins in the progression and pathogenesis of Alzheimer’s disease. Free Radic Res. 2011;45:59–72.PubMedCrossRefGoogle Scholar
  12. Bymaster FP, Felder CC. Role of the cholinergic muscarinic system in bipolar disorder and related mechanism of action of antipsychotic agents. Mol Psychiatry. 2002;7:57–63.CrossRefGoogle Scholar
  13. Calder PC, Yaqoob P. Understanding omega-3 polyunsaturated fatty acids. Postgrad Med. 2009;121:148–57.PubMedCrossRefGoogle Scholar
  14. Chauhan A, Chauhan V. Oxidative stress in autism. Pathophysiology. 2006;13:171–81.PubMedCrossRefGoogle Scholar
  15. Chauhan A, Audhya T, Chauhan V. Brain region-specific glutathione redox imbalance in autism. Neurochem Res. 2012;37:1681–9.PubMedCrossRefGoogle Scholar
  16. Ciccoli L, De Felice C, Paccagnini E, Leoncini S, Pecorelli A, Signorini C, Belmonte G, Valacchi G, Rossi M, Hayek J. Morphological changes and oxidative damage in Rett Syndrome erythrocytes. Biochim Biophys Acta. 2012;1820:511–20.PubMedCrossRefGoogle Scholar
  17. Comporti M. Lipid peroxidation and biogenic aldehydes: from the identification of 4-hydroxynonenal to further achievements in biopathology. Free Radic Res. 1998;28:623–35.PubMedCrossRefGoogle Scholar
  18. Dalle-Donne I, Rossi R, Colombo R, Giustarini D, Milzani A. Biomarkers of oxidative damage in human disease. Clin Chem. 2006;52:601–23.PubMedCrossRefGoogle Scholar
  19. Damodaran LP, Arumugam G. Urinary oxidative stress markers in children with autism. Redox Rep. 2011;16:216–22.PubMedCrossRefGoogle Scholar
  20. De Felice C, Ciccoli L, Leoncini S, Signorini C, Rossi M, Vannuccini L, Guazzi G, Latini G, Comporti M, Valacchi G, Hayek J. Systemic oxidative stress in classic Rett syndrome. Free Radic Biol Med. 2009;47:440–8.PubMedCrossRefGoogle Scholar
  21. De Felice C, Signorini C, Durand T, Oger C, Guy A, Bultel-Poncé V, Galano JM, Ciccoli L, Leoncini S, D'Esposito M, Filosa S, Pecorelli A, Valacchi G, Hayek J. F2-dihomo-isoprostanes as potential early biomarkers of lipid oxidative damage in Rett syndrome. J Lipid Res. 2011;52:2287–97.PubMedCrossRefGoogle Scholar
  22. De Felice C, Signorini C, Durand T, Ciccoli L, Leoncini S, D'Esposito M, Filosa S, Oger C, Guy A, Bultel-Poncé V, Galano JM, Pecorelli A, De Felice L, Valacchi G, Hayek J. Partial rescue of Rett syndrome by ω-3 polyunsaturated fatty acids (PUFAs) oil. Genes Nutr. 2012a;7:447–58.PubMedCrossRefGoogle Scholar
  23. De Felice C, Signorini C, Leoncini S, Pecorelli A, Durand T, Valacchi G, Ciccoli L, Hayek J. The role of oxidative stress in Rett syndrome: an overview. Ann N Y Acad Sci. 2012b;1259:121–35.PubMedCrossRefGoogle Scholar
  24. Dubinina EE, Dadali VA. Role of 4-hydroxy-trans-2-nonenal in cell functions. Biochemistry (Mosc). 2010;75:1069–87.CrossRefGoogle Scholar
  25. Erden-Inal M, Sunal E, Kanbak G. Age-related changes in the glutathione redox system. Cell Biochem Funct. 2002;20:61–6.PubMedCrossRefGoogle Scholar
  26. Essa MM, Guillemin GJ, Waly MI, Al-Sharbati MM, Al-Farsi YM, Hakkim FL, Ali A, Al-Shafaee MS. Increased markers of oxidative stress in autistic children of the Sultanate of Oman. Biol Trace Elem Res. 2012;147:25–7.PubMedCrossRefGoogle Scholar
  27. Esterbauer H, Schaur RJ, Zollner H. Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Radic Biol Med. 1991;11:81–128.PubMedCrossRefGoogle Scholar
  28. Farooqui A. Neurochemical aspects of 4-hydroxynonenal. In: Farooqui AA, editor. Lipid mediators and their metabolism in the brain. Springer: New York; 2011. p. 159–91.CrossRefGoogle Scholar
  29. Fernandez-Fernandez S, Almeida A, Bolaños JP. Antioxidant and bioenergetic coupling between neurons and astrocytes. Biochem J. 2012;443:3–11.PubMedCrossRefGoogle Scholar
  30. Fleuranceau-Morel P, Barrier L, Fauconneau B, Piriou A, Huguet F. Origin of 4-hydroxynonenal incubation-induced inhibition of dopamine transporter and Na+/K+ adenosine triphosphate in rat striatal synaptosomes. Neurosci Lett. 1999;277:91–4.PubMedCrossRefGoogle Scholar
  31. Formichi P, Battisti C, Dotti MT, Hayek G, Zappella M, Federico A. Vitamin E serum levels in rett syndrome. J Neurol Sci. 1998;156:227–30.PubMedCrossRefGoogle Scholar
  32. Ghanizadeh A, Akhondzadeh S, Hormozi M, Makarem A, Abotorabi-Zarchi M, Firoozabadi A. Glutathione-related factors and oxidative stress in autism, a review. Curr Med Chem. 2012;19:4000–5.PubMedCrossRefGoogle Scholar
  33. Grune T, Davies KJ. The proteasomal system and HNE-modified proteins. Mol Aspects Med. 2003;24:195–204.PubMedCrossRefGoogle Scholar
  34. Hagberg B. Clinical manifestations and stages of rett syndrome. Ment Retard Dev Disabil Res Rev. 2002;8:61–5.PubMedCrossRefGoogle Scholar
  35. Halliwell B, Gutteridge JMC. Free radicals in biology and medicine. 4th ed. Oxford: Oxford University Press; 2007.Google Scholar
  36. Hayashi M, Miyata R, Tanuma N. Oxidative stress in developmental brain disorders. Adv Exp Med Biol. 2012;724:278–90.PubMedCrossRefGoogle Scholar
  37. Herbert MR. Contributions of the environment and environmentally vulnerable physiology to autism spectrum disorders. Curr Opin Neurol. 2010;23:103–10.PubMedCrossRefGoogle Scholar
  38. Hermawati D, Then SM, Winarni TI, Faradz SMH, Jamal R. Lower erythrocyte GST activity in autism spectrum disorder (ASD) patients compared to normal controls. Asia-Pacific J Mol Med. 2011;1:2.Google Scholar
  39. Hovatta I, Juhila J, Donner J. Oxidative stress in anxiety and comorbid disorders. Neurosci Res. 2010;68:261–75.PubMedCrossRefGoogle Scholar
  40. Kety SS. “The general metabolism of the brain in vivo”. In: Richter D, editor. Metabolism of the nervous system. London: Pergamon; 1957. p. 221–37.Google Scholar
  41. Kugaya A, Sanacora G. Beyond monoamines: glutamatergic function in mood disorders. CNS Spectr. 2005;10:808–19.PubMedGoogle Scholar
  42. Leoncini S, De Felice C, Signorini C, Pecorelli A, Durand T, Valacchi G, Ciccoli L, Hayek J. Oxidative stress in Rett syndrome: natural history, genotype, and variants. Redox Rep. 2011;16:145–53.PubMedCrossRefGoogle Scholar
  43. Libbey JE, Sweeten TL, McMahon WM, Fujinami RS. Autistic disorder and viral infections. J Neurovirol. 2005;11:1–10.PubMedCrossRefGoogle Scholar
  44. Lucantoni G, Pietraforte D, Matarrese P, Gambardella L, Metere A, Paone G, Bianchi EL, Straface E. The red blood cell as a biosensor for monitoring oxidative imbalance in chronic obstructive pulmonary disease: an ex vivo and in vitro study. Antioxid Redox Signal. 2006;8:1171–82.PubMedCrossRefGoogle Scholar
  45. Mariani E, Polidori MC, Cherubini A, Mecocci P. Oxidative stress in brain aging, neurodegenerative and vascular diseases: an overview. J Chromatogr B Analyt Technol Biomed Life Sci. 2005;827:65–75.PubMedCrossRefGoogle Scholar
  46. McGinnis WR. Oxidative stress in autism. Altern Ther Health Med. 2004;10:22–36.PubMedGoogle Scholar
  47. Meguid NA, Dardir AA, Abdel-Raouf ER, Hashish A. Evaluation of oxidative stress in autism: defective antioxidant enzymes and increased lipid peroxidation. Biol Trace Elem Res. 2011;143:58–65.PubMedCrossRefGoogle Scholar
  48. Melnyk S, Fuchs GJ, Schulz E, Lopez M, Kahler SG, Fussell JJ, Bellando J, Pavliv O, Rose S, Seidel L, Gaylor DW, James SJ. Metabolic imbalance associated with methylation dysregulation and oxidative damage in children with autism. J Autism Dev Disord. 2012;42:367–77.PubMedCrossRefGoogle Scholar
  49. Minetti M, Leto TL, Malorni W. Radical generation and alterations of erythrocyte integrity as bioindicators of diagnostic or prognostic value in COPD? Antioxid Redox Signal. 2008;10:829–36.PubMedCrossRefGoogle Scholar
  50. Mostafa GA, El-Hadidi ES, Hewedi DH, Abdou MM. Oxidative stress in Egyptian children with autism: relation to autoimmunity. J Neuroimmunol. 2010;219:114–8.PubMedCrossRefGoogle Scholar
  51. Nazeer A, Ghaziuddin M. Autism spectrum disorders: clinical features and diagnosis. Pediatr Clin North Am. 2012;59:19–25.PubMedCrossRefGoogle Scholar
  52. Neul JL, Kaufmann WE, Glaze DG, Christodoulou J, Clarke AJ, Bahi-Buisson N, Leonard H, Bailey ME, Schanen NC, Zappella M, Renieri A, Huppke P, Percy AK, Rett Search Consortium. Rett syndrome: revised diagnostic criteria and nomenclature. Ann Neurol. 2010;68:944–50.PubMedCrossRefGoogle Scholar
  53. Ono H, Sakamoto A, Sakura N. Plasma total glutathione concentrations in healthy pediatric and adult subjects. Clin Chim Acta. 2001;312:227–9.PubMedCrossRefGoogle Scholar
  54. Onore C, Careaga M, Ashwood P. The role of immune dysfunction in the pathophysiology of autism. Brain Behav Immun. 2012;26:383–92.PubMedCrossRefGoogle Scholar
  55. Palmieri L, Persico AM. Mitochondrial dysfunction in autism spectrum disorders: cause or effect?? Biochim Biophys Acta. 2010;1797:1130–7.PubMedCrossRefGoogle Scholar
  56. Pecorelli A, Ciccoli L, Signorini C, Leoncini S, Giardini A, D'Esposito M, Filosa S, Hayek J, De Felice C, Valacchi G. Increased levels of 4HNE-protein plasma adducts in Rett syndrome. Clin Biochem. 2011;44:368–71.PubMedCrossRefGoogle Scholar
  57. Pecorelli A, Leoncini S, De Felice C, Signorini C, Cerrone C, Valacchi G, et al. Non-protein-bound iron and 4-hydroxynonenal protein adducts in classic autism. Brain Dev. 2013;35:146–54.PubMedCrossRefGoogle Scholar
  58. Pedersen WA, Fu W, Keller JN, Markesbery WR, Appel S, Smith RG, Kasarskis E, Mattson MP. Protein modification by the lipid peroxidation product 4-hydroxynonenal in the spinal cords of amyotrophic lateral sclerosis patients. Ann Neurol. 1998;44:819–24.PubMedCrossRefGoogle Scholar
  59. Perluigi M, Sultana R, Cenini G, Di Domenico F, Memo M, Pierce WM, Coccia R, Butterfield DA. Redox proteomics identification of 4-hydroxynonenal-modified brain proteins in Alzheimer’s disease: role of lipid peroxidation in Alzheimer’s disease pathogenesis. Proteomics Clin Appl. 2009;3:682–93.PubMedCrossRefGoogle Scholar
  60. Perry SW, Norman JP, Litzburg A, Gelbard HA. Antioxidants are required during the early critical period, but not later, for neuronal survival. J Neurosci Res. 2004;78:485–92.PubMedCrossRefGoogle Scholar
  61. Petersen DR, Doorn JA. Reactions of 4-hydroxynonenal with proteins and cellular targets. Free Radical Biol Med. 2004;37:937–45.CrossRefGoogle Scholar
  62. Poli G, Schaur RJ, Siems WG, Leonarduzzi G. 4-Hydroxynonenal: a membrane lipid oxidation product of medicinal interest. Med Res Rev. 2008;28:569–631.PubMedCrossRefGoogle Scholar
  63. Reed T, Perluigi M, Sultana R, Pierce WM, Klein JB, Turner DM, Coccia R, Markesbery WR, Butterfield DA. Redox proteomic identification of 4-hydroxy-2-nonenal-modified brain proteins in amnestic mild cognitive impairment: insight into the role of lipid peroxidation in the progression and pathogenesis of Alzheimer’s disease. Neurobiol Dis. 2008;30:107–20.PubMedCrossRefGoogle Scholar
  64. Rett A. On a unusual brain atrophy syndrome in hyperammonemia in childhood. Wien Med Wochenschr. 1966;116:723–6.PubMedGoogle Scholar
  65. Robinson SJ. Childhood epilepsy and autism spectrum disorders: psychiatric problems, phenotypic expression, and anticonvulsants. Neuropsychol Rev. 2012; doi:10.1007/s11065-012-9212-3.Google Scholar
  66. Rose S, Melnyk S, Pavliv O, Bai S, Nick TG, Frye RE, James SJ. Evidence of oxidative damage and inflammation associated with low glutathione redox status in the autism brain. Transl Psychiatr. 2012;2:e134.CrossRefGoogle Scholar
  67. Santini MT, Straface E, Cipri A, Peverini M, Santulli M, Malorni W. Structural alterations in erythrocytes from patients with chronic obstructive pulmonary disease. Haemostasis. 1997;27:201–10.PubMedGoogle Scholar
  68. Sayre LM, Moreira PI, Smith MA, Perry G. Metal ions and oxidative protein modification in neurological disease. Ann Ist Super Sanita. 2005;41:143–64.PubMedGoogle Scholar
  69. Scala E, Ariani F, Mari F, Caselli R, Pescucci C, Longo I, Meloni I, Giachino D, Bruttini M, Hayek G, Zappella M, Renieri A. CDKL5/STK9 is mutated in Rett syndrome variant with infantile spasms. J Med Genet. 2005;42:103–7.PubMedCrossRefGoogle Scholar
  70. Schauenstein E. Autoxidation of polyunsaturated esters in water: chemical structure and biological activity of the products. J Lipid Res. 1967;8:417–28.PubMedGoogle Scholar
  71. Shacter E. Quantification and significance of protein oxidation in biological samples. Drug Metab Rev. 2000;32:307–26.PubMedCrossRefGoogle Scholar
  72. Shin Y, White BH, Uh M, Sidhu A. Modulation of D1-like dopamine receptor function by aldehydic products of lipid peroxidation. Brain Res. 2003;968:102–13.PubMedCrossRefGoogle Scholar
  73. Shukla V, Mishra SK, Pant HC. Oxidative stress in neurodegeneration. Adv Pharmacol Sci. 2011;2011:572634.PubMedGoogle Scholar
  74. Sies H. Oxidative stress: oxidants and antioxidants. Exp Physiol. 1997;82:291–5.PubMedGoogle Scholar
  75. Signorini C, De Felice C, Leoncini S, Giardini A, D'Esposito M, Filosa S, Della Ragione F, Rossi M, Pecorelli A, Valacchi G, Ciccoli L, Hayek J. F4-neuroprostanes mediate neurological severity in Rett syndrome. Clin Chim Acta. 2011;412:1399–406.PubMedCrossRefGoogle Scholar
  76. Singh VK. Phenotypic expression of autoimmune autistic disorder (AAD): a major subset of autism. Ann Clin Psychiatry. 2009;21:148–61.PubMedGoogle Scholar
  77. Sofić E, Riederer P, Killian W, Rett A. Reduced concentrations of ascorbic acid and glutathione in a single case of rett syndrome: a postmortem brain study. Brain Dev. 1987;9:529–31.PubMedCrossRefGoogle Scholar
  78. Stone JM, Morrison PD, Pilowsky LS. Glutamate and dopamine dysregulation in schizophrenia, a synthesis and selective. J Psychopharmacol. 2007;21:440–52.PubMedCrossRefGoogle Scholar
  79. Tandon R, Shipley JE, Greden JF, Mann NA, Eisner WH, Goodson JA. Muscarinic cholinergic hyperactivity in schizophrenia. Relationship to positive and negative symptoms. Schizophr Res. 1991;4:23–30.PubMedCrossRefGoogle Scholar
  80. Tao J, Van Esch H, Hagedorn-Greiwe M, Hoffmann K, Moser B, Raynaud M, Sperner J, Fryns JP, Schwinger E, Gécz J, Ropers HH, Kalscheuer VM. Mutations in the X-linked cyclin-dependent kinase-like 5 (CDKL5/STK9) gene are associated with severe neurodevelopmental retardation. Am J Hum Genet. 2004;75:1149–54.PubMedCrossRefGoogle Scholar
  81. Torres-Ramos YD, Guzman-Grenfell AM, Montoya-Estrada A, Ramirez-Venegas A, Martinez RS, Flores-Trujillo F, Ochoa-Cautino L, Hicks JJ. RBC membrane damage and decreased band 3 phospho-tyrosine phosphatase activity are markers of COPD progression. Front Biosci (Elite Ed). 2010;2:1385–93.CrossRefGoogle Scholar
  82. Trachootham D, Lu W, Ogasawara MA, Nilsa RD, Huang P. Redox regulation of cell survival. Antioxid Redox Signal. 2008;10:1343–74.PubMedCrossRefGoogle Scholar
  83. Uchida K. 4-Hydroxy-2-nonenal: a product and mediator of oxidative stress. Prog Lipid Res. 2003;42:318–43.PubMedCrossRefGoogle Scholar
  84. Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol. 2007;39:44–84.PubMedCrossRefGoogle Scholar
  85. van Horssen J, Schreibelt G, Drexhage J, Hazes T, Dijkstra CD, van der Valk P, de Vries HE. Severe oxidative damage in multiple sclerosis lesions coincides with enhanced antioxidant enzyme expression. Free Radic Biol Med. 2008;45:1729–37.PubMedCrossRefGoogle Scholar
  86. Weaving LS, Christodoulou J, Williamson SL, Friend KL, McKenzie OL, Archer H, Evans J, Clarke A, Pelka GJ, Tam PP, Watson C, Lahooti H, Ellaway CJ, Bennetts B, Leonard H, Gécz J. Mutations of CDKL5 cause a severe neurodevelopmental disorder with infantile spasms and mental retardation. Am J Hum Genet. 2004;75:1079–93.PubMedCrossRefGoogle Scholar
  87. Weintraub K. The prevalence puzzle: autism counts. Nature. 2011;479:22–4.PubMedCrossRefGoogle Scholar
  88. Zavitsanou K, Katsifis A, Mattner F, Huang X-F. Investigation of M1⁄M4 muscarinic receptors in the anterior cingulate cortex in schizophrenia, bipolar disorder, and major depression disorder. Neuropsychopharmacology. 2004;29:619–25.PubMedCrossRefGoogle Scholar
  89. Zhang Y, Sun Y, Wang F, Wang Z, Peng Y, Li R. Downregulating the canonical Wnt/β-catenin signaling pathway attenuates the susceptibility to autism-like phenotypes by decreasing oxidative stress. Neurochem Res. 2012;37:1409–19.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Giuseppe Valacchi
    • 1
  • Alessandra Pecorelli
    • 2
  • Cinzia Signorini
    • 2
  • Silvia Leoncini
    • 2
  • Lucia Ciccoli
    • 2
  • Claudio De Felice
    • 3
  • Joussef Hayek
    • 4
  1. 1.Department of Life Science and BiotechnologiesUniversity of FerraraFerraraItaly
  2. 2.Department of Molecular and Developmental MedicineUniversity of SienaSienaItaly
  3. 3.Neonatal Intensive Care UnitUniversity Hospital, Azienda Ospedaliera Universitaria SeneseSienaItaly
  4. 4.Child Neuropsychiatry UnitUniversity Hospital, Azienda Ospedaliera Universitaria SeneseSienaItaly

Personalised recommendations