Skip to main content

Clastic Dike

  • Reference work entry
  • First Online:

Definition

Tabular body, crosscut subvertical sheets of sediments within a contrasting sedimentary or the crystalline rock type.

Category

A type of dike.

A proposed origin of some of the intracrater linear ridge types (various origins) on Mars.

Spelling

Dike (US), dyke (UK)

Description

Discordant subvertical sheets, tabular bodies of clastic sediments, which accumulate either “passively” by deposition into preexisting fissures or “dynamically” by fracturing the country rock and injection of clastic material during overpressure buildup (Levi et al. 2006). The clastic dikes are generally opening mode (mode I) fractures. At map view, the geometry of clastic dike swarms can be chaotic, linear, en echelon, subparallel, or radial (Marco et al. 2002). Dike width may range from several mm up to several m (Figs. 1 and 2).

Clastic Dike, Fig. 1
figure 394 figure 394

Three disconnected, partially overlapping dike segments close to the Ami’az Plain (Israel) surface. Similar to magmatic dikes, this geometry hints at the...

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   1,299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Allen JRL (1982) Developments in sedimentology, vol 2. Elsevier, Amsterdam, pp 554–556

    Google Scholar 

  • Borradaile GJ (1984) A note on sand dike orientations. J Struct Geol 6:587–588

    Article  Google Scholar 

  • Demoulin A (1996) Clastic dykes in East Belgium; evidence for upper Pleistocene strong earthquakes west of the Lower Rhine rift segment. J Geo Soc 153:803–810

    Article  Google Scholar 

  • Dressler BO, Reimold WU (2004) Order or chaos? Origin and mode of emplacement of breccias in floors of large impact structures. Earth Sci Rev 67:1–54

    Article  Google Scholar 

  • Eyal Y (1988) Sandstone dikes as evidence of localized transtension in a transpressive regime, Bir Zreir area, eastern Sinai. Tectonics 7:1279–1289

    Article  Google Scholar 

  • Head JW, Mustard JF (2006) Breccia dikes and crater-related faults in impact craters on Mars: erosion and exposure on the floor of a crater 75 km in diameter at the dichotomy boundary. Meteorit Planet Sci 41(10):1675–1690

    Article  Google Scholar 

  • Hudgins JA, Spray JG (2006) Lunar impact-fluidized dikes: evidence from Apollo 17 Station 7, Taurus-Littrow Valley. Lunar Planet Sci 37, abstract #1176, Houston

    Google Scholar 

  • Jackson CA-L (2007) The geometry, distribution, and development of clastic injections in slope systems: seismic examples from the Upper Cretaceous Kyrre Formation, Mly slope, Norwegian margin. In: Hurst A, Cartwright J (eds) Sand injectites: implications for hydrocarbon exploration and production, vol 87, AAPG Memoir. American Association of Petroleum Geologists, Tulsa, pp 37–48

    Google Scholar 

  • Jolly RJH, Lonergran L (2002) Mechanisms and controls on the formation of sand intrusions. J Geol Soc 159:605–617

    Article  Google Scholar 

  • Kenkmann T (2003) Dike formation, cataclastic flow, and rock fluidization during impact cratering: an example from the Upheaval Dome structure, Utah. Earth Planet Sci Lett 214:43–58

    Article  Google Scholar 

  • Korteniemi J (2009) Interpreting remote sensing data: martian dikes vs. other features. Lunar Planet Sci XL, abstract #2084, The Woodlands

    Google Scholar 

  • Korteniemi J, Raitala J, Aittola M, Ivanov MA, Kostama V-P, Öhman T, Hiesinger H (2010) Dike indicators in the Hadriaca Patera–Promethei Terra region, Mars. Earth Planet Sci Lett 294:466–478

    Article  Google Scholar 

  • Lambert P (1981) Breccia dikes – geological constraints on the formation of complex craters. In: Schultz PH, Merrill RB (eds) Multi-ring basins: formation and evolution. Pergamon Press, New York, pp 59–78

    Google Scholar 

  • Larsen E, Mangerud J (1992) Subglacially formed clastic dikes. Sveriges Geologiska Undersökning, Ser. Ca 81. Geological Survey of Sweden, Uppsala, pp 163–170. ISBN 91-7158-518-4

    Google Scholar 

  • Levi T, Weinberger R, Aïfa T, Eyal Y, Marco S (2006) Injection mechanism of clay-rich sediments into dikes during earthquakes. Geochem Geophys Geosyst 7(12):Q12009. doi:10.1029/2006GC001410

    Article  Google Scholar 

  • Levi T, Weinberger R, Eyal Y (2011) A coupled fluid-fracture approach to propagation of clastic dikes during earthquakes. Tectonophysics 498:35–44

    Article  Google Scholar 

  • Marco S, Weinberger R, Agnon A (2002) Radial fractures formed by a salt stock in the Dead Sea Rift, Israel. Terra Nova 14:288–294

    Article  Google Scholar 

  • Mashchak MS, Ezersky VA (1980) Clastic dikes of the Kara Crater Pai Khoi. Lunar Planet Sci 11:680–682, Houston

    Google Scholar 

  • Obermeier SF (1996) Use of liquefaction-induced features for Palaeoseismic analysis – an overview of how seismic liquefaction features can be distinguished from other features and how their regional distribution and properties of source sediment can be used to infer the location and strength of Holocene Paleo-earthquakes. Eng Geol 44:1–76

    Article  Google Scholar 

  • Obermeier SF (1998) Liquefaction evidence for strong earthquakes of Holocene and latest Pleistocene ages in the states of Indiana and Illinois, USA. Eng Geol 50:227–254

    Article  Google Scholar 

  • Obermeier SF, Pond EC (1998) Issues in using liquefaction features for paleoseismic analysis. U.S. Geological Survey Open-File report 98-28

    Google Scholar 

  • Peterson GL (1968) Flow structures in sandstone dikes. Sediment Geol 2:177–190

    Article  Google Scholar 

  • Reimold WU (1998) Exogenic and endogenic breccias: a discussion of major problematics. Earth Sci Rev 43:25–47

    Article  Google Scholar 

  • Reimold WI, Horton JW, Schmitt RT (2008) Debate about impactite nomenclature – recent problems. Large meteorite impacts and planetary evolution IV, #3033

    Google Scholar 

  • Rice MS, Bell JF III, Gupta S, Warner NH, Goddard K, Anderson RB (2005) A detailed geologic characterization of Eberswalde crater, Mars. MARS 1:1–13. doi:10.1555/mars.2005.1.0

    Google Scholar 

  • Röshoff K and Cosgrove J (2002) Sedimentary dykes in the Oskarshamn-Västervik area. R-02-37 Svensk Kärnbränslehantering AB. ISSN 1402-3091

    Google Scholar 

  • Schlische RW, Ackermann RV (1995) Kinematic significance of sediment-filled fissures in the North Mountain Basalt, Fundy Rift Basin, Nova Scotia, Canada. J Struct Geol 17:987–996

    Article  Google Scholar 

  • Shand SJ (1916) The pseudotachylyte of Parijs (Orange Free State) and its relation to “trap-shotten gneiss” and “flinty crush-rock”. Q J Geol Soc Lon 72:198–221

    Article  Google Scholar 

  • Sims JD (1975) Determining earthquake recurrence intervals in young lacustrine sediments. Tectonophysics 29:141–152

    Article  Google Scholar 

  • Stanton RJ Jr, Pray LC (2004) Skeletal-carbonate Neptunian dikes of the Capitan Reef: Permian, Guadalupe Mountains, Texas, U.S.A. J Sediment Res 74:805–816

    Article  Google Scholar 

  • Stöffler D, Grieve RAF (2007) Impactites, Chapter 2.11. In: Fettes D, Desmons J (eds) Metamorphic rocks: a classification and glossary of terms, recommendations of the International Union of Geological Sciences. Cambridge University Press, Cambridge, pp 82–92, 111–242

    Google Scholar 

  • Stöffler D, Knöll H-D, Maerz U (1979) Terrestrial and lunar impact breccias and the classification of lunar highland rocks. 10th Lunar Planet Sci Conf Proc 1:639–675, Houston. Pergamon Press, New York (A80-23557 08-91)

    Google Scholar 

  • Sturkell EFF, Ormo J (1997) Impact-related clastic injections in the marine Ordovician Lockne impact structure, central Sweden. Sedimentology 44:793–804

    Article  Google Scholar 

  • Tornabene LL, Osinski GR, McEwen AS (2009) Parautochthonous Megabreccias and Possible Evidence of Impact-induced Hydrothermal Alteration in Holden crater, Mars. Lunar Planet Sci Conf XL, abstract #1766, Houston

    Google Scholar 

  • Vera JA, Molina JM, Ruiz-Ortiz PA (1984) Discontinuidades estratigraficos diques neptunicos- y brechas sinsedimentarias en la Sierra de Cabra: Publicaciones de Geologica, Universidad Autonoma de Barcelona 20:141–162

    Google Scholar 

  • Winslow MA (1983) Clastic dikes swarms and the structural evolution of the foreland fold and thrust belt of the Southern Andes. GSA Bulletin 94:1073–1080

    Article  Google Scholar 

  • Winterer EL, Sarti M (1994) Neptunian dykes and associated features in southern Spain: Mechanics of formation and tectonic implications. Sedimentology 41:1109–1132

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henrik Hargitai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this entry

Cite this entry

Hargitai, H., Levi, T. (2015). Clastic Dike. In: Hargitai, H., Kereszturi, Á. (eds) Encyclopedia of Planetary Landforms. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3134-3_99

Download citation

Publish with us

Policies and ethics