Encyclopedia of Planetary Landforms

2015 Edition
| Editors: Henrik Hargitai, Ákos Kereszturi

Clastic Dike

  • Henrik Hargitai
  • Tsafrir Levi
Reference work entry
DOI: https://doi.org/10.1007/978-1-4614-3134-3_99

Definition

Tabular body, crosscut subvertical sheets of sediments within a contrasting sedimentary or the crystalline rock type.

Category

A type of  dike.

A proposed origin of some of the intracrater  linear ridge types (various origins) on Mars.

Spelling

Dike (US), dyke (UK)

Description

Discordant subvertical sheets, tabular bodies of clastic sediments, which accumulate either “passively” by deposition into preexisting fissures or “dynamically” by fracturing the country rock and injection of clastic material during overpressure buildup (Levi et al. 2006). The clastic dikes are generally opening mode (mode I) fractures. At map view, the geometry of clastic dike swarms can be chaotic, linear, en echelon, subparallel, or radial (Marco et al. 2002). Dike width may range from several mm up to several m (Figs. 1 and 2).
This is a preview of subscription content, log in to check access.

References

  1. Allen JRL (1982) Developments in sedimentology, vol 2. Elsevier, Amsterdam, pp 554–556Google Scholar
  2. Borradaile GJ (1984) A note on sand dike orientations. J Struct Geol 6:587–588CrossRefGoogle Scholar
  3. Demoulin A (1996) Clastic dykes in East Belgium; evidence for upper Pleistocene strong earthquakes west of the Lower Rhine rift segment. J Geo Soc 153:803–810CrossRefGoogle Scholar
  4. Dressler BO, Reimold WU (2004) Order or chaos? Origin and mode of emplacement of breccias in floors of large impact structures. Earth Sci Rev 67:1–54CrossRefGoogle Scholar
  5. Eyal Y (1988) Sandstone dikes as evidence of localized transtension in a transpressive regime, Bir Zreir area, eastern Sinai. Tectonics 7:1279–1289CrossRefGoogle Scholar
  6. Head JW, Mustard JF (2006) Breccia dikes and crater-related faults in impact craters on Mars: erosion and exposure on the floor of a crater 75 km in diameter at the dichotomy boundary. Meteorit Planet Sci 41(10):1675–1690CrossRefGoogle Scholar
  7. Hudgins JA, Spray JG (2006) Lunar impact-fluidized dikes: evidence from Apollo 17 Station 7, Taurus-Littrow Valley. Lunar Planet Sci 37, abstract #1176, HoustonGoogle Scholar
  8. Jackson CA-L (2007) The geometry, distribution, and development of clastic injections in slope systems: seismic examples from the Upper Cretaceous Kyrre Formation, Mly slope, Norwegian margin. In: Hurst A, Cartwright J (eds) Sand injectites: implications for hydrocarbon exploration and production, vol 87, AAPG Memoir. American Association of Petroleum Geologists, Tulsa, pp 37–48Google Scholar
  9. Jolly RJH, Lonergran L (2002) Mechanisms and controls on the formation of sand intrusions. J Geol Soc 159:605–617CrossRefGoogle Scholar
  10. Kenkmann T (2003) Dike formation, cataclastic flow, and rock fluidization during impact cratering: an example from the Upheaval Dome structure, Utah. Earth Planet Sci Lett 214:43–58CrossRefGoogle Scholar
  11. Korteniemi J (2009) Interpreting remote sensing data: martian dikes vs. other features. Lunar Planet Sci XL, abstract #2084, The WoodlandsGoogle Scholar
  12. Korteniemi J, Raitala J, Aittola M, Ivanov MA, Kostama V-P, Öhman T, Hiesinger H (2010) Dike indicators in the Hadriaca Patera–Promethei Terra region, Mars. Earth Planet Sci Lett 294:466–478CrossRefGoogle Scholar
  13. Lambert P (1981) Breccia dikes – geological constraints on the formation of complex craters. In: Schultz PH, Merrill RB (eds) Multi-ring basins: formation and evolution. Pergamon Press, New York, pp 59–78Google Scholar
  14. Larsen E, Mangerud J (1992) Subglacially formed clastic dikes. Sveriges Geologiska Undersökning, Ser. Ca 81. Geological Survey of Sweden, Uppsala, pp 163–170. ISBN 91-7158-518-4Google Scholar
  15. Levi T, Weinberger R, Aïfa T, Eyal Y, Marco S (2006) Injection mechanism of clay-rich sediments into dikes during earthquakes. Geochem Geophys Geosyst 7(12):Q12009. doi:10.1029/2006GC001410CrossRefGoogle Scholar
  16. Levi T, Weinberger R, Eyal Y (2011) A coupled fluid-fracture approach to propagation of clastic dikes during earthquakes. Tectonophysics 498:35–44CrossRefGoogle Scholar
  17. Marco S, Weinberger R, Agnon A (2002) Radial fractures formed by a salt stock in the Dead Sea Rift, Israel. Terra Nova 14:288–294CrossRefGoogle Scholar
  18. Mashchak MS, Ezersky VA (1980) Clastic dikes of the Kara Crater Pai Khoi. Lunar Planet Sci 11:680–682, HoustonGoogle Scholar
  19. Obermeier SF (1996) Use of liquefaction-induced features for Palaeoseismic analysis – an overview of how seismic liquefaction features can be distinguished from other features and how their regional distribution and properties of source sediment can be used to infer the location and strength of Holocene Paleo-earthquakes. Eng Geol 44:1–76CrossRefGoogle Scholar
  20. Obermeier SF (1998) Liquefaction evidence for strong earthquakes of Holocene and latest Pleistocene ages in the states of Indiana and Illinois, USA. Eng Geol 50:227–254CrossRefGoogle Scholar
  21. Obermeier SF, Pond EC (1998) Issues in using liquefaction features for paleoseismic analysis. U.S. Geological Survey Open-File report 98-28Google Scholar
  22. Peterson GL (1968) Flow structures in sandstone dikes. Sediment Geol 2:177–190CrossRefGoogle Scholar
  23. Reimold WU (1998) Exogenic and endogenic breccias: a discussion of major problematics. Earth Sci Rev 43:25–47CrossRefGoogle Scholar
  24. Reimold WI, Horton JW, Schmitt RT (2008) Debate about impactite nomenclature – recent problems. Large meteorite impacts and planetary evolution IV, #3033Google Scholar
  25. Rice MS, Bell JF III, Gupta S, Warner NH, Goddard K, Anderson RB (2005) A detailed geologic characterization of Eberswalde crater, Mars. MARS 1:1–13. doi:10.1555/mars.2005.1.0Google Scholar
  26. Röshoff K and Cosgrove J (2002) Sedimentary dykes in the Oskarshamn-Västervik area. R-02-37 Svensk Kärnbränslehantering AB. ISSN 1402-3091Google Scholar
  27. Schlische RW, Ackermann RV (1995) Kinematic significance of sediment-filled fissures in the North Mountain Basalt, Fundy Rift Basin, Nova Scotia, Canada. J Struct Geol 17:987–996CrossRefGoogle Scholar
  28. Shand SJ (1916) The pseudotachylyte of Parijs (Orange Free State) and its relation to “trap-shotten gneiss” and “flinty crush-rock”. Q J Geol Soc Lon 72:198–221CrossRefGoogle Scholar
  29. Sims JD (1975) Determining earthquake recurrence intervals in young lacustrine sediments. Tectonophysics 29:141–152CrossRefGoogle Scholar
  30. Stanton RJ Jr, Pray LC (2004) Skeletal-carbonate Neptunian dikes of the Capitan Reef: Permian, Guadalupe Mountains, Texas, U.S.A. J Sediment Res 74:805–816CrossRefGoogle Scholar
  31. Stöffler D, Grieve RAF (2007) Impactites, Chapter 2.11. In: Fettes D, Desmons J (eds) Metamorphic rocks: a classification and glossary of terms, recommendations of the International Union of Geological Sciences. Cambridge University Press, Cambridge, pp 82–92, 111–242Google Scholar
  32. Stöffler D, Knöll H-D, Maerz U (1979) Terrestrial and lunar impact breccias and the classification of lunar highland rocks. 10th Lunar Planet Sci Conf Proc 1:639–675, Houston. Pergamon Press, New York (A80-23557 08-91)Google Scholar
  33. Sturkell EFF, Ormo J (1997) Impact-related clastic injections in the marine Ordovician Lockne impact structure, central Sweden. Sedimentology 44:793–804CrossRefGoogle Scholar
  34. Tornabene LL, Osinski GR, McEwen AS (2009) Parautochthonous Megabreccias and Possible Evidence of Impact-induced Hydrothermal Alteration in Holden crater, Mars. Lunar Planet Sci Conf XL, abstract #1766, HoustonGoogle Scholar
  35. Vera JA, Molina JM, Ruiz-Ortiz PA (1984) Discontinuidades estratigraficos diques neptunicos- y brechas sinsedimentarias en la Sierra de Cabra: Publicaciones de Geologica, Universidad Autonoma de Barcelona 20:141–162Google Scholar
  36. Winslow MA (1983) Clastic dikes swarms and the structural evolution of the foreland fold and thrust belt of the Southern Andes. GSA Bulletin 94:1073–1080CrossRefGoogle Scholar
  37. Winterer EL, Sarti M (1994) Neptunian dykes and associated features in southern Spain: Mechanics of formation and tectonic implications. Sedimentology 41:1109–1132CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.NASA Ames Research Center/NPPMoffett FieldUSA
  2. 2.Division of Engineering Geology and Geological HazardsThe Geological Survey of Israel (GSI)JerusalemIsrael