Encyclopedia of Planetary Landforms

2015 Edition
| Editors: Henrik Hargitai, Ákos Kereszturi

Cryptic Region

Reference work entry
DOI: https://doi.org/10.1007/978-1-4614-3134-3_93


A region of low (<0.4) albedo within the southern seasonal cap on Mars that remains near the CO2 sublimation temperature (Kieffer et al. 2000) (≈145 K) and displays weak CO2 ice and H2O ice signatures (Langevin et al. 2006).


Cryptic terrain


During the southern polar cap’s recession (Ls = 180–270°), the seasonal south polar cap retreats continuously and asymmetrically around the geographic pole, leaving a prominent albedo feature on the seasonal cap that appears almost as dark as bare ground, yet remains cold (−135 °C) because there is a thick layer of CO2 ice under an opaque dust cover. The region occupies the same area year by year (Titus et al. 2003).

The low albedo of the material cover in the cryptic region indicates that a large fraction of the solar radiation is being absorbed in or beneath (Kieffer 2000) the surface.

When the Sun rises seasonally, temperatures remain near the CO2frost point, but albedos slowly increase initially and then drop...

This is a preview of subscription content, log in to check access.


  1. Hansen CJ, Thomas N, Portyankina G, McEwen A et al (2010) HiRISE observations of gas sublimation-driven activity in Mars’ southern polar regions: I. Erosion of the surface. Icarus 205(1):283–295CrossRefGoogle Scholar
  2. Kieffer HH (2000) Annual punctuated CO2 slab-ice and jets on Mars. The second international conference on Mars polar science and exploration, Reykjavik, Iceland #4095Google Scholar
  3. Kieffer HH (2003) Behavior of solid CO2 on Mars: a real zoo. Sixth international conference on Mars, Pasadena, California #3158Google Scholar
  4. Kieffer HH, Titus TN (2001) TES mapping of Mars’ north seasonal cap. Icarus 154(1):162–180CrossRefGoogle Scholar
  5. Kieffer HH, Martin TZ, Peterfreund R, Jakosky BM, Miner ED, Palluconi FD (1977) Thermal and albedo mapping of Mars during the Viking primary mission. JGR 82(28):4249–4291CrossRefGoogle Scholar
  6. Kieffer HH, Titus TN, Mullins KF, Christensen PR (2000) Mars south polar spring and summer behavior observed by TES: seasonal cap evolution controlled by frost grain size. J Geophys Res 105(E4):9653–9699. doi:10.1029/1999JE001136CrossRefGoogle Scholar
  7. Kieffer HH, Christensen PR, Titus TN (2006) CO2 jets formed by sublimation beneath translucent slab ice in Mars’ seasonal south polar ice cap. Nature 442:793–796CrossRefGoogle Scholar
  8. Langevin Y, Douté S, Vincendon M, Poulet F, Bibring J-P, Gondet B, Schmitt B, Forget F (2006) No signature of clear CO2 ice from the ‘cryptic’ regions in Mars’ south seasonal polar cap. Nature 442:790–792. doi:10.1038/nature05012CrossRefGoogle Scholar
  9. Piqueux S, Byrne S, Richardson MI (2003) Sublimation of Mars’s southern seasonal CO2 ice cap and the formation of spiders. J Geophys Res 108(E8):5084. doi:10.1029/2002JE002007CrossRefGoogle Scholar
  10. Titus TN, Kieffer HH, Plaut JJ, Christensen PR, Ivanov AB, et al (2003) South polar cryptic region revisited: themis observations. Third Mars polar science conference, Alberta, Canada #8081Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.NASA Ames Research Center/NPPMoffett FieldUSA